Feasibility study of B16 melanoma therapy using oxidized ATP to target purinergic receptor P2X7.

[1]  F. Di Virgilio,et al.  Expression of P2X7 receptor increases in vivo tumor growth. , 2012, Cancer research.

[2]  H. Friess,et al.  Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer , 2011, Purinergic Signalling.

[3]  P. Mcgeer,et al.  Block of Purinergic P2X7R Inhibits Tumor Growth in a C6 Glioma Brain Tumor Animal Model , 2011, Journal of neuropathology and experimental neurology.

[4]  M. Smyth,et al.  Extracellular adenosine triphosphate and adenosine in cancer , 2010, Oncogene.

[5]  Mitsuru Sato,et al.  gamma-Irradiation induces P2X(7) receptor-dependent ATP release from B16 melanoma cells. , 2010, Biochimica et biophysica acta.

[6]  F. Di Virgilio,et al.  P2X7: a growth-promoting receptor—implications for cancer , 2009, Purinergic Signalling Purinergic Signalling.

[7]  S. Sugama,et al.  The Activation of P2X7 Receptor Impairs Lysosomal Functions and Stimulates the Release of Autophagolysosomes in Microglial Cells1 , 2009, The Journal of Immunology.

[8]  S. Sugama,et al.  Lysophospholipids and ATP Mutually Suppress Maturation and Release of IL-1β in Mouse Microglial Cells Using a Rho-Dependent Pathway1 , 2008, The Journal of Immunology.

[9]  G. Yegutkin Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. , 2008, Biochimica et biophysica acta.

[10]  R. Hill,et al.  The tumor microenvironment and metastatic disease , 2008, Clinical & Experimental Metastasis.

[11]  F. Di Virgilio,et al.  Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? , 2008, Endocrinology.

[12]  K. Stenmark,et al.  Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells , 2007, Angiogenesis.

[13]  L. Puskás,et al.  Functional genomics of calcium channels in human melanoma cells , 2007 .

[14]  M. Tsukimoto,et al.  Role of purinoceptors in immune-mediated disease (therapies targeting the P2X7 receptor) , 2007 .

[15]  F. Di Virgilio,et al.  A role for P2X7 in microglial proliferation , 2006, Journal of neurochemistry.

[16]  A. Ikari,et al.  P2X7 Receptor-Dependent Cell Death Is Modulated during Murine T Cell Maturation and Mediated by Dual Signaling Pathways1 , 2006, The Journal of Immunology.

[17]  A. Ohta,et al.  A2A adenosine receptor protects tumors from antitumor T cells , 2006, Proceedings of the National Academy of Sciences.

[18]  D. Donnelly-roberts,et al.  Structure−Activity Relationship Studies on a Series of Novel, Substituted 1-Benzyl-5-phenyltetrazole P2X7 Antagonists , 2006 .

[19]  F. Di Virgilio,et al.  The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. , 2006, Cancer research.

[20]  G. Burnstock Purinergic signalling , 2006 .

[21]  F. Di Virgilio,et al.  A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. , 2005, Molecular biology of the cell.

[22]  Peter E. M. Butler,et al.  Human melanomas express functional P2X7 receptors , 2005, Cell and Tissue Research.

[23]  A. Ikari,et al.  Involvement of Chloride in Apoptotic Cell Death Induced by Activation of ATP-sensitive P2X7 Purinoceptor* , 2005, Journal of Biological Chemistry.

[24]  G. Burnstock,et al.  Immunocytochemical and pharmacological characterisation of P2-purinoceptor-mediated cell growth and death in PC-3 hormone refractory prostate cancer cells. , 2004, Anticancer research.

[25]  G. Burnstock,et al.  Chicken DT40 cells stably transfected with the rat P2X7 receptor ion channel: a system suitable for the study of purine receptor-mediated cell death. , 2003, Biochemical pharmacology.

[26]  Geoffrey Burnstock,et al.  Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. , 2003, The Journal of investigative dermatology.

[27]  R. Scolyer,et al.  Increased expression of apoptotic markers in melanoma , 2003, Melanoma research.

[28]  S. Dissing,et al.  The human SH‐SY5Y neuroblastoma cell‐line expresses a functional P2X7 purinoceptor that modulates voltage‐dependent Ca2+ channel function , 2002, Journal of neurochemistry.

[29]  G. Droogmans,et al.  Volume-regulated Anion Channels Serve as an Auto/Paracrine Nucleotide Release Pathway in Aortic Endothelial Cells , 2002, The Journal of general physiology.

[30]  Amal K. Dutta,et al.  Volume-Dependent Atp-Conductive Large-Conductance Anion Channel as a Pathway for Swelling-Induced Atp Release , 2001, The Journal of general physiology.

[31]  Chih‐Chung Lin,et al.  P2Y2 receptor‐mediated proliferation of C6 glioma cells via activation of Ras/Raf/MEK/MAPK pathway , 2000, British journal of pharmacology.

[32]  G. Burnstock,et al.  Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells. , 2000, Kidney international.

[33]  F. Di Virgilio,et al.  Increased Proliferation Rate of Lymphoid Cells Transfected with the P2X7 ATP Receptor* , 1999, The Journal of Biological Chemistry.

[34]  G. Bilbe,et al.  Regulation of epidermal homeostasis through P2Y2 receptors , 1999, British journal of pharmacology.

[35]  J. Griffiths,et al.  Causes and consequences of acidic pH in tumors: a magnetic resonance study. , 1999, Advances in enzyme regulation.

[36]  H. Zimmermann,et al.  Ecto-nucleotidases--molecular structures, catalytic properties, and functional roles in the nervous system. , 1999, Progress in brain research.

[37]  E. Schwiebert,et al.  Bioluminescence detection of ATP release mechanisms in epithelia. , 1998, American journal of physiology. Cell physiology.

[38]  A. Giaccia,et al.  The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. , 1998, Cancer research.

[39]  D. Ferrari,et al.  Cytolytic P2X purinoceptors , 1998, Cell Death and Differentiation.

[40]  R. Sutherland Tumor hypoxia and gene expression--implications for malignant progression and therapy. , 1998, Acta oncologica.

[41]  Rakesh K. Jain,et al.  Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation , 1997, Nature Medicine.

[42]  J. Riordan,et al.  Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates , 1993, The Journal of general physiology.

[43]  J. Haveman,et al.  The relevance of tumour pH to the treatment of malignant disease. , 1984, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.