Elastic vibrations in seamless microtubules

Parameters characterizing elastic properties of microtubules, measured in several recent experiments, reflect an anisotropic character. We describe the microscopic dynamical properties of microtubules using a discrete model based on an appropriate lattice of dimers. Adopting a harmonic approximation for the dimer–dimer interactions and estimating the lattice elastic constants, we make predictions regarding vibration dispersion relations and vibration propagation velocities. Vibration frequencies and velocities are expressed as functions of the elastic constants and of the geometrical characteristics of the microtubules. We show that vibrations which propagate along the protofilament do so significantly faster than those along the helix.

[1]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[2]  C. Schönenberger,et al.  Nanomechanics of microtubules. , 2002, Physical review letters.

[3]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[4]  G. Langford Arrangement of subunits in microtubules with 14 profilaments , 1980, The Journal of cell biology.

[5]  P. Janmey,et al.  Viscoelastic properties of vimentin compared with other filamentous biopolymer networks , 1991, The Journal of cell biology.

[6]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[7]  D. Chrétien,et al.  New data on the microtubule surface lattice , 1991, Biology of the cell.

[8]  D. Odde,et al.  Estimates of lateral and longitudinal bond energies within the microtubule lattice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Pokorný,et al.  Excitation of vibrations in microtubules in living cells. , 2004, Bioelectrochemistry.

[10]  Kim,et al.  Elastic vibrations of microtubules in a fluid. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Mitra Dutta,et al.  Phonons in Nanostructures , 2001 .

[12]  M. Holley,et al.  Mechanics of microtubule bundles in pillar cells from the inner ear. , 1997, Biophysical journal.

[13]  E. Nogales A structural view of microtubule dynamics , 1999, Cellular and Molecular Life Sciences CMLS.

[14]  C. Kittel Introduction to solid state physics , 1954 .

[15]  Henrik Flyvbjerg,et al.  Modeling elastic properties of microtubule tips and walls , 1998, European Biophysics Journal.

[16]  K. Böhm,et al.  Structural diversity and dynamics of microtubules and polymorphic tubulin assemblies. , 1990, Electron microscopy reviews.

[17]  H. Flyvbjerg,et al.  Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin , 1998, European Biophysics Journal.

[18]  Nathan A. Baker,et al.  The physical basis of microtubule structure and stability , 2003, Protein science : a publication of the Protein Society.

[19]  R. Wade,et al.  Microtubule structure at improved resolution. , 2001, Biochemistry.

[20]  R. Wade,et al.  Diffraction by Helical Structures with Seams: Microtubules , 1997 .

[21]  R A Milligan,et al.  Kinesin follows the microtubule's protofilament axis , 1993, The Journal of cell biology.

[22]  William V Nicholson,et al.  Microtubule structure at 8 A resolution. , 2002, Structure.

[23]  L. Amos,et al.  The microtubule lattice--20 years on. , 1995, Trends in cell biology.

[24]  Kenneth R. Foster,et al.  Viscous Damping of Vibrations in Microtubules , 2000, Journal of biological physics.

[25]  F. MacKintosh,et al.  Deformation and collapse of microtubules on the nanometer scale. , 2003, Physical review letters.