Statistical features for image retrieval a quantitative comparison

In this paper we present a comparison between various statistical descriptors and analyze their goodness in classifying textural images. The chosen statistical descriptors have been proposed by Tamura, Battiato and Haralick. In this work we also test a combination of the three descriptors for texture analysis. The databases used in our study are the well-known Brodatz's album and DDSM (Heath et al., 1998). The computed features are classified using the Naive Bayes, the RBF, the KNN, the Random Forest and Random Tree models. The results obtained from this study show that we can achieve a high classification accuracy if the descriptors are used all together.

[1]  A. Rosenfeld,et al.  Texture Coarseness: Further Experiments , 1974 .

[2]  B G Prasad,et al.  Statistical texture feature-based retrieval and performance evaluation of CT brain images , 2011, 2011 3rd International Conference on Electronics Computer Technology.

[3]  Masako Sato,et al.  Visual perception of texture of textiles , 2001 .

[4]  Hermann Ney,et al.  Features for Image Retrieval: A Quantitative Comparison , 2004, DAGM-Symposium.

[5]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[6]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[7]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  E. M. van Rikxoort,et al.  Evaluation of color representation for texture analysis , 2004 .

[9]  Jana Reinhard,et al.  Textures A Photographic Album For Artists And Designers , 2016 .

[10]  Muwei Jian,et al.  Texture Image Classification Using Perceptual Texture Features and Gabor Wavelet Features , 2009, 2009 Asia-Pacific Conference on Information Processing.

[11]  Azriel Rosenfeld,et al.  Visual Texture Analysis: An Overview , 1975 .

[12]  Egon L. van den Broek,et al.  Mimicking human texture classification , 2005, IS&T/SPIE Electronic Imaging.

[13]  Michael S. Landy,et al.  Visual perception of texture , 2002 .

[14]  Stefan M. Rüger,et al.  Evaluation of Texture Features for Content-Based Image Retrieval , 2004, CIVR.

[15]  Sebastiano Battiato,et al.  Perceptive visual texture classification and retrieval , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[16]  Chuan-Yu Chang,et al.  Image Classification using a Module RBF Neural Network , 2006, First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06).

[17]  Egon L. van den Broek,et al.  Parallel-Sequential Texture Analysis , 2005, ICAPR.

[18]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[19]  Egon L. van den Broek,et al.  M-HinTS: mimicking humans in texture sorting , 2006, Electronic Imaging.

[20]  L. Ganesan,et al.  COMBINED STATISTICAL AND STRUCTURAL APPROACH FOR UNSUPERVISED TEXTURE CLASSIFICATION , 2007 .

[21]  Richard H. Moore,et al.  Current Status of the Digital Database for Screening Mammography , 1998, Digital Mammography / IWDM.