An improved band-anticrossing model – including the positional dependence of nitrogen – for InGaNAs∕GaAs quantum well lasers

The positional dependence of the localized nitrogen (N) within the quantum well is included with the band-anti-crossing model that describes the interaction of the GaInAs conduction band with the localized N defect. It is found that N located at the center of the well interacts more strongly with the InGaAs conduction band than N localized near the edge of the quantum well. Different distributions of N are investigated by studying the conduction band edge shift, energy level splitting, dipole moments, and gain. These quantities are found to be highly dependent upon the position of the N.

[1]  M. Hopkinson,et al.  Optical characteristics of 1.55 μm GaInNAs multiple quantum wells , 2004 .

[2]  John P. R. David,et al.  Improving optical properties of 1.55 μm GaInNAs/GaAs multiple quantum wells with Ga(In)NAs barrier and space layer , 2003 .

[3]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[4]  J. Rorison,et al.  Optical transitions in GaInNAs'GaAs multi-quantum wells with varying N content investigated by photoluminescence excitation spectroscopy , 2003 .

[5]  Wladek Walukiewicz,et al.  Band anticrossing in highly mismatched III-V semiconductor alloys , 2002 .

[6]  S. Tomić,et al.  Tight-binding and k?p models for the electronic structure of Ga(In)NAs and related alloys , 2002 .

[7]  T. Kitatani,et al.  Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells , 2002 .

[8]  L. Largeau,et al.  Effect of nitrogen and temperature on the electronic band structure of GaAs1−xNx alloys , 2002 .

[9]  Jorg Hader,et al.  Gain in 1.3 μm materials: InGaNAs and InGaPAs semiconductor quantum-well lasers , 2000 .

[10]  E. P. O'Reilly,et al.  Theory of enhanced bandgap non-parabolicity in GaNxAs1−x and related alloys , 1999 .

[11]  Wladek Walukiewicz,et al.  Band Anticrossing in GaInNAs Alloys , 1999 .

[12]  K. Uomi,et al.  GaInNAs-GaAs long-wavelength vertical-cavity surface-emitting laser diodes , 1998, IEEE Photonics Technology Letters.

[13]  Takeshi Kitatani,et al.  GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance , 1996 .

[14]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[15]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[16]  Joel N. Schulman,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[17]  R. Eppenga,et al.  New k.p theory for GaAs/Ga 1-x A1 x As-type quantum wells , 1987 .

[18]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[19]  S. Tomić,et al.  Determining the band-structure of an InGaNAs/GaAs semiconductor laser structure using non-destructive photomodulated reflectance measurements and k·p studies , 2003 .

[20]  Peter S. Zory,et al.  Quantum well lasers , 1993 .

[21]  Shun Lien Chuang,et al.  Optical gain and gain suppression of quantum-well lasers with valence band mixing , 1990 .

[22]  A. Messiah Quantum Mechanics , 1961 .