The strong law of small numbers
暂无分享,去创建一个
[1] Louis de Forcrand,et al. Higher Arithmetic , 1898, Nature.
[2] H. V. Koch,et al. Sur la distribution des nombres premiers , 1901 .
[3] H. Temperley,et al. On some new types of partitions associated with generalized ferrers graphs , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Douglas Quadling,et al. The Higher Arithmetic , 1954 .
[5] Raphael M. Robinson,et al. A report on primes of the form ⋅2ⁿ+1 and on factors of Fermat numbers , 1958 .
[6] On a conjecture concerning the primes , 1959 .
[7] W. Sierpinski. Sur un problème concernant les nombres. , 1960 .
[8] Primes of the form ⁴+1 , 1967 .
[9] A report on prime numbers of the forms =(6+1)2^{2-1}-1 and ^{’}=(6-1)2^{2}-1 , 1968 .
[10] H. Riesel. Lucasian criteria for the primality of =ℎ⋅2ⁿ-1 , 1969 .
[11] Note on a Nonlinear Recurrence Related to √2 , 1970 .
[12] N. Sloane. A Handbook Of Integer Sequences , 1973 .
[13] P. Erdös,et al. Bounds for the R-th Coefficients of Cyclotomic Polynomials , 1974 .
[14] On the Error Term of the Prime Number Theorem and the Difference between the Number of Primes in the Residue Classes Modulo 4 , 1981 .
[15] Solomon W. Golomb. The Evidence for Fortune's Conjecture , 1981 .
[16] R. Guy. Unsolved Problems in Number Theory , 1981 .
[17] B. Berndt,et al. Chapter 5 Ramanujan's second notebook , 1981 .
[18] Bruce C. Berndt,et al. Chapter 7 of Ramanujan’s second notebook , 1982 .
[19] Calvin T. Long. Strike It out: Add It up , 1982 .
[20] Wilfrid Keller,et al. Factors of Fermat numbers and large primes of the form ⋅2ⁿ+1 , 1983 .
[21] B. Berndt. Ramanujan's Notebooks , 1985 .
[22] H. Montgomery,et al. The order of magnitude of the mth coefficients of cyclotomic polynomials , 1985, Glasgow Mathematical Journal.
[23] R. Guy. John Isbell's Game of Beanstalk and John Conway's Game of Beans-Don't-Talk , 1986 .
[24] Duncan A. Buell,et al. The twentieth Fermat number is composite , 1988 .
[25] Roger B. Eggleton,et al. Catalan Strikes Again! How Likely Is a Function to Be Convex? , 1988 .