Cell-based maximum-entropy approximants

In this paper, we devise cell-based maximum-entropy (max-ent) basis functions that are used in a Galerkin method for the solution of partial differential equations. The motivation behind this work is the construction of smooth approximants with controllable support on unstructured meshes. In the variational scheme to obtain max-ent basis functions, the nodal prior weight function is constructed from an approximate distance function to a polygonal curve in R2. More precisely, we take powers of the composition of R-functions via Boolean operations. The basis functions so constructed are nonnegative, smooth, linearly complete, and compactly-supported in a neighbor-ring of segments that enclose each node. The smoothness is controlled by two positive integer parameters: the normalization order of the approximation of the distance function and the power to which it is raised. The properties and mathematical foundations of the new compactly-supported approximants are described, and its use to solve two-dimensional elliptic boundary-value problems (Poisson equation and linear elasticity) is demonstrated. The sound accuracy and the optimal rates of convergence of the method in Sobolev norms are established.

[1]  Marino Arroyo,et al.  On the optimum support size in meshfree methods: A variational adaptivity approach with maximum‐entropy approximants , 2010 .

[2]  Geoff Wyvill,et al.  Soft objects , 1986 .

[3]  R. Wright,et al.  Overview and construction of meshfree basis functions: from moving least squares to entropy approximants , 2007 .

[4]  N. Sukumar,et al.  Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Marino Arroyo,et al.  Blending isogeometric analysis and local maximum entropy meshfree approximants , 2013 .

[7]  A. Belyaev,et al.  Signed L p -distance fields. , 2013 .

[8]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[9]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[10]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[11]  Vadim Shapiro,et al.  Theory of R-functions and Applications: A Primer , 1991 .

[12]  Vadim Shapiro,et al.  Field modeling with sampled distances , 2006, Comput. Aided Des..

[13]  Jules Bloomenthal,et al.  Bulge Elimination in Convolution Surfaces , 1997, Comput. Graph. Forum.

[14]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[15]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[16]  Wolfgang A. Wall,et al.  Information-flux method: a meshfree maximum-entropy Petrov-Galerkin method including stabilised finite element methods , 2012 .

[17]  Michael Ortiz,et al.  Local Maximum-Entropy Approximation Schemes , 2007 .

[18]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[19]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[20]  Roger J.-B. Wets,et al.  Deriving the Continuity of Maximum-Entropy Basis Functions via Variational Analysis , 2007, SIAM J. Optim..

[21]  Vadim Shapiro,et al.  Heterogeneous material modeling with distance fields , 2004, Comput. Aided Geom. Des..

[22]  D. L. Young,et al.  Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems , 2014 .

[23]  Marino Arroyo,et al.  Second‐order convex maximum entropy approximants with applications to high‐order PDE , 2013 .

[24]  Alexander A. Pasko,et al.  Signed Lp-distance fields , 2013, Comput. Aided Des..

[25]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations , 2002 .

[26]  Bo Li,et al.  Optimal transportation meshfree approximation schemes for fluid and plastic flows , 2010 .

[27]  Dongdong Wang,et al.  A consistently coupled isogeometric-meshfree method , 2014 .

[28]  Elías Cueto,et al.  A higher order method based on local maximum entropy approximation , 2010 .

[29]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[30]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[31]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[32]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[33]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[34]  Antonios Zervos,et al.  A method for creating a class of triangular C1 finite elements , 2012 .

[35]  C. Duarte,et al.  Arbitrarily smooth generalized finite element approximations , 2006 .

[36]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[37]  Michael Ortiz,et al.  Smooth, second order, non‐negative meshfree approximants selected by maximum entropy , 2009 .

[38]  G. Subbarayan,et al.  Isogeometric enriched field approximations , 2012 .

[39]  Brian Wyvill,et al.  Controllable Binary Csg Operators for "soft Objects" , 2004, Int. J. Shape Model..

[40]  Vadim Shapiro,et al.  Semi-analytic geometry with R-functions , 2007, Acta Numerica.

[41]  A. Rosolen,et al.  An adaptive meshfree method for phase-field models of biomembranes. Part I: Approximation with maximum-entropy basis functions , 2013, J. Comput. Phys..

[42]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[43]  Jack Hale,et al.  A locking-free meshfree method for the simulation of shear-deformable plates based on a mixed variational formulation , 2012 .

[44]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[45]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[46]  Vadim Shapiro,et al.  Approximate distance fields with non-vanishing gradients , 2004, Graph. Model..

[47]  Andrei Sherstyuk,et al.  Kernel functions in convolution surfaces: a comparative analysis , 1999, The Visual Computer.

[48]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[49]  Sashi K. Kunnath,et al.  Meshfree co‐rotational formulation for two‐dimensional continua , 2009 .

[50]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[51]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[52]  Brian Wyvill,et al.  A Gradient-Based Implicit Blend , 2012 .

[53]  Michael A. Puso,et al.  Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity , 2009 .

[54]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .