Cell-based maximum-entropy approximants
暂无分享,去创建一个
[1] Marino Arroyo,et al. On the optimum support size in meshfree methods: A variational adaptivity approach with maximum‐entropy approximants , 2010 .
[2] Geoff Wyvill,et al. Soft objects , 1986 .
[3] R. Wright,et al. Overview and construction of meshfree basis functions: from moving least squares to entropy approximants , 2007 .
[4] N. Sukumar,et al. Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .
[5] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[6] Marino Arroyo,et al. Blending isogeometric analysis and local maximum entropy meshfree approximants , 2013 .
[7] A. Belyaev,et al. Signed L p -distance fields. , 2013 .
[8] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[9] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[10] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[11] Vadim Shapiro,et al. Theory of R-functions and Applications: A Primer , 1991 .
[12] Vadim Shapiro,et al. Field modeling with sampled distances , 2006, Comput. Aided Des..
[13] Jules Bloomenthal,et al. Bulge Elimination in Convolution Surfaces , 1997, Comput. Graph. Forum.
[14] Chenglei Yang,et al. On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.
[15] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[16] Wolfgang A. Wall,et al. Information-flux method: a meshfree maximum-entropy Petrov-Galerkin method including stabilised finite element methods , 2012 .
[17] Michael Ortiz,et al. Local Maximum-Entropy Approximation Schemes , 2007 .
[18] Kai Hormann,et al. Mean value coordinates for arbitrary planar polygons , 2006, TOGS.
[19] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[20] Roger J.-B. Wets,et al. Deriving the Continuity of Maximum-Entropy Basis Functions via Variational Analysis , 2007, SIAM J. Optim..
[21] Vadim Shapiro,et al. Heterogeneous material modeling with distance fields , 2004, Comput. Aided Geom. Des..
[22] D. L. Young,et al. Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems , 2014 .
[23] Marino Arroyo,et al. Second‐order convex maximum entropy approximants with applications to high‐order PDE , 2013 .
[24] Alexander A. Pasko,et al. Signed Lp-distance fields , 2013, Comput. Aided Des..
[25] Michael Griebel,et al. Meshfree Methods for Partial Differential Equations , 2002 .
[26] Bo Li,et al. Optimal transportation meshfree approximation schemes for fluid and plastic flows , 2010 .
[27] Dongdong Wang,et al. A consistently coupled isogeometric-meshfree method , 2014 .
[28] Elías Cueto,et al. A higher order method based on local maximum entropy approximation , 2010 .
[29] David A. Forsyth,et al. Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..
[30] Magdalena Ortiz,et al. Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .
[31] Kai Hormann,et al. Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.
[32] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[33] Rodney W. Johnson,et al. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.
[34] Antonios Zervos,et al. A method for creating a class of triangular C1 finite elements , 2012 .
[35] C. Duarte,et al. Arbitrarily smooth generalized finite element approximations , 2006 .
[36] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[37] Michael Ortiz,et al. Smooth, second order, non‐negative meshfree approximants selected by maximum entropy , 2009 .
[38] G. Subbarayan,et al. Isogeometric enriched field approximations , 2012 .
[39] Brian Wyvill,et al. Controllable Binary Csg Operators for "soft Objects" , 2004, Int. J. Shape Model..
[40] Vadim Shapiro,et al. Semi-analytic geometry with R-functions , 2007, Acta Numerica.
[41] A. Rosolen,et al. An adaptive meshfree method for phase-field models of biomembranes. Part I: Approximation with maximum-entropy basis functions , 2013, J. Comput. Phys..
[42] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[43] Jack Hale,et al. A locking-free meshfree method for the simulation of shear-deformable plates based on a mixed variational formulation , 2012 .
[44] Wing Kam Liu,et al. Reproducing kernel particle methods , 1995 .
[45] Weimin Han,et al. Reproducing kernel element method. Part I: Theoretical formulation , 2004 .
[46] Vadim Shapiro,et al. Approximate distance fields with non-vanishing gradients , 2004, Graph. Model..
[47] Andrei Sherstyuk,et al. Kernel functions in convolution surfaces: a comparative analysis , 1999, The Visual Computer.
[48] P. Lancaster,et al. Surfaces generated by moving least squares methods , 1981 .
[49] Sashi K. Kunnath,et al. Meshfree co‐rotational formulation for two‐dimensional continua , 2009 .
[50] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .
[51] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[52] Brian Wyvill,et al. A Gradient-Based Implicit Blend , 2012 .
[53] Michael A. Puso,et al. Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity , 2009 .
[54] Fehmi Cirak,et al. Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .