Inferential Modeling and Independent Component Analysis for Redundant Sensor Validation

The calibration of redundant safety critical sensors in nuclear power plants is a manual task that consumes valuable time and resources. Automated, data-driven techniques, to monitor the calibration of redundant sensors have been developed over the last two decades, but have not been fully implemented. Parity space methods such as the Instrumentation and Calibration Monitoring Program (ICMP) method developed by Electric Power Research Institute and other empirical based inferential modeling techniques have been developed but have not become viable options. Existing solutions to the redundant sensor validation problem have several major flaws that restrict their applications. Parity space method, such as ICMP, are not robust for low redundancy conditions and their operation becomes invalid when there are only two redundant sensors. Empirical based inferential modeling is only valid when intrinsic correlations between predictor variables and response variables remain static during the model training and testing phase. They also commonly produce high variance results and are not the optimal solution to the problem. This dissertation develops and implements independent component analysis (ICA) for redundant sensor validation. Performance of the ICA algorithm produces sufficiently low residual variance parameter estimates when compared to simple averaging, ICMP, and principal component regression (PCR) techniques. For stationary signals, it can detect and isolate sensor drifts for as few as two redundant sensors. It is fast and can be embedded into a real-time system. This is demonstrated on a water level control system.

[1]  Asok Ray,et al.  Calibration and estimation of redundant signals , 2000, Autom..

[2]  B. Efron Nonparametric standard errors and confidence intervals , 1981 .

[3]  DelftThe Netherlandsypma,et al.  Rotating Machine Vibration Analysis with Second-order Independent Component Analysis , 1999 .

[4]  Asok Ray,et al.  A Redundancy Management Procedure for Fault Detection and Isolation , 1986 .

[5]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[6]  M. DeGrandpre,et al.  Redundant chemical sensors for calibration-impossible applications. , 2001, Talanta.

[7]  John Deyst,et al.  In-Flight Parity Vector Compensation for FDI , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Jie Chen,et al.  Observer-based fault detection and isolation: robustness and applications , 1997 .

[9]  Belle R. Upadhyaya,et al.  Application of Neural Networks for Sensor Validation and Plant Monitoring , 1990 .

[10]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[11]  Asok Ray Sequential Testing for Fault Detection in Multiply-Redundant Systems , 1989 .

[12]  James W. Wisnowski,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2002 .

[13]  P. Frank,et al.  Survey of robust residual generation and evaluation methods in observer-based fault detection systems , 1997 .

[14]  Janos Gertler,et al.  Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions , 2000 .

[15]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[16]  Kari Torkkola,et al.  Blind Separation For Audio Signals - Are We There Yet? , 1999 .

[17]  Michèle Basseville,et al.  Information criteria for residual generation and fault detection and isolation , 1997, Autom..

[18]  Weihua Li,et al.  Isolation enhanced principal component analysis , 1999 .

[19]  David H. Wolpert,et al.  The Relationship Between PAC, the Statistical Physics Framework, the Bayesian Framework, and the VC Framework , 1995 .

[20]  Asok Ray,et al.  Detection and identification of potential faults via multi-level hypotheses testing , 2002, Signal Process..

[21]  Hong Jin,et al.  Fault detection of systems with redundant sensors using constrained Kohonen networks , 2001, Autom..

[22]  Manabu Kano,et al.  Comparison of statistical process monitoring methods: application to the Eastman challenge problem , 2000 .

[23]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[24]  J. W. Hines,et al.  On-Line Sensor Calibration Verification , 2001 .

[25]  Robert E. Uhrig,et al.  Nonlinear Partial Least Squares Modeling for Instrument Surveillance and Calibration Verification , 2000 .

[26]  Jose A. Romagnoli,et al.  A robust strategy for real-time process monitoring , 2001 .

[27]  G. Deco,et al.  An Information-Theoretic Approach to Neural Computing , 1997, Perspectives in Neural Computing.

[28]  Boris Kalitventzeff,et al.  Plant monitoring and fault detection: Synergy between data reconciliation and principal component analysis , 2001 .

[29]  Gilles Burel,et al.  Blind separation of sources: A nonlinear neural algorithm , 1992, Neural Networks.

[30]  Thomas J. McAvoy,et al.  Nonlinear PLS Modeling Using Neural Networks , 1992 .

[31]  Erkki Oja,et al.  An Experimental Comparison of Neural Algorithms for Independent Component Analysis and Blind Separation , 1999, Int. J. Neural Syst..

[32]  Andrei V. Gribok,et al.  Regularization of Feedwater Flow Rate Evaluation for Venturi Meter Fouling Problem in Nuclear Power Plants , 2001 .

[33]  H Farid,et al.  Separating reflections from images by use of independent component analysis. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Asok Ray,et al.  Analytic Redundancy for On-Line Fault Diagnosis in a Nuclear Reactor , 1983 .

[35]  Asok Ray,et al.  On-Line Fault Diagnosis in a Nuclear Reactor by Sequential Testing , 1983, IEEE Transactions on Nuclear Science.

[36]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[37]  Rolf Isermann,et al.  Supervision, fault-detection and fault-diagnosis methods — An introduction , 1997 .

[38]  Evelyne Vigneau,et al.  A new method of regression on latent variables. Application to spectral data , 2002 .

[39]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[40]  J. White,et al.  The Shiryayev sequential probability ratio test for redundancy management , 1982 .

[41]  Jose A. Romagnoli,et al.  A strategy for detection and isolation of sensor failures and process upsets , 2001 .

[42]  Robert E. Uhrig,et al.  Intelligent Surveillance and Calibration Verification in Power Systems , 2000 .

[43]  J. Nadal Non linear neurons in the low noise limit : a factorial code maximizes information transferJean , 1994 .

[44]  J. Nadal,et al.  Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer Network 5 , 1994 .

[45]  J. Friedman Exploratory Projection Pursuit , 1987 .

[46]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[47]  Andrew D. Back,et al.  A First Application of Independent Component Analysis to Extracting Structure from Stock Returns , 1997, Int. J. Neural Syst..

[48]  J. P. Herzog,et al.  Application of a model-based fault detection system to nuclear plant signals , 1997 .

[49]  Asok Ray,et al.  Signal Validation for Nuclear Power Plants , 1983 .

[50]  David H. Wolpert,et al.  On the Connection between In-sample Testing and Generalization Error , 1992, Complex Syst..

[51]  K. C. Cheung,et al.  State estimation with measurement error compensation using neural network , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[52]  H. M. Heise,et al.  Calibration modeling by partial least-squares and principal component regression and its optimization using an improved leverage correction for prediction testing , 1990 .

[53]  Paul A. Viola,et al.  Restructuring Sparse High Dimensional Data for Effective Retrieval , 1998, NIPS.

[54]  E. Oja,et al.  Independent Component Analysis , 2013 .

[55]  李幼升,et al.  Ph , 1989 .

[56]  Kiyotoshi Matsuoka,et al.  A neural net for blind separation of nonstationary signals , 1995, Neural Networks.

[57]  Manabu Kano,et al.  A new multivariate statistical process monitoring method using principal component analysis , 2001 .

[58]  G Rizzoni,et al.  Nonlinear parity equation based residual generation for diagnosis of automotive engine faults , 1995 .

[59]  Mukund Desai,et al.  A Calibration and Estimation Filter for Multiply Redundant Measurement Systems , 1984 .

[60]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[61]  N. Venkateswaran,et al.  Analytical redundancy based fault detection of gyroscopes in spacecraft applications , 2002 .

[62]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[63]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[64]  Manabu Kano,et al.  Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem , 2002 .

[65]  J. Wesley Hines,et al.  Prediction interval estimation techniques for empirical modeling strategies and their applications to signal validation tasks , 2003 .

[66]  E. B. Andersen,et al.  Modern factor analysis , 1961 .

[67]  Andreas Ziehe,et al.  Adaptive On-line Learning in Changing Environments , 1996, NIPS.

[68]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[69]  Weihua Li,et al.  Detection, identification, and reconstruction of faulty sensors with maximized sensitivity , 1999 .

[70]  Lefteri H. Tsoukalas,et al.  Soft computing technologies in nuclear engineering applications , 1999 .

[71]  T. Kerr,et al.  The Controversy over Use of SPRT and GLR Techniques and Other Loose-Ends in Failure Detection , 1983, 1983 American Control Conference.

[72]  Robert E. Uhrig,et al.  ON-LINE SENSOR CALIBRATION MONITORING AND FAULT DETECTION FOR CHEMICAL PROCESSES , 1998 .

[73]  Lefteri H. Tsoukalas,et al.  A methodology for performing virtual measurements in a nuclear reactor system , 1992 .

[74]  Robert Tibshirani,et al.  A Comparison of Some Error Estimates for Neural Network Models , 1996, Neural Computation.

[75]  H. H. Yang,et al.  Information backpropagation for blind separation of sources in nonlinear mixture , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[76]  S. Simani,et al.  Identification and fault diagnosis of an industrial gas turbine prototype model , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[77]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[78]  Christian Jutten,et al.  Nonlinear source separation: the post-nonlinear mixtures , 1997, ESANN.

[79]  Mark A. Girolami,et al.  Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation , 1999 .

[80]  Jean-Marc Nuzillard,et al.  Application of blind source separation to 1-D and 2-D nuclear magnetic resonance spectroscopy , 1998, IEEE Signal Processing Letters.

[81]  S. Joe Qin,et al.  Joint diagnosis of process and sensor faults using principal component analysis , 1998 .

[82]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[83]  Ron J. Patton,et al.  B-Spline Network Integrated Qualitative and Quantitative Fault Detection , 1996 .

[84]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[85]  K. Gross,et al.  Sequential probability ratio test for nuclear plant component surveillance , 1991 .

[86]  B. Efron Computers and the Theory of Statistics: Thinking the Unthinkable , 1979 .

[87]  Jiayang Sun Some Practical Aspects of Exploratory Projection Pursuit , 1993, SIAM J. Sci. Comput..

[88]  Jie Chen,et al.  A REVIEW OF PARITY SPACE APPROACHES TO FAULT DIAGNOSIS , 1992 .

[89]  Robert E. Uhrig,et al.  Regularization Methods for Inferential Sensing in Nuclear Power Plants , 2000 .

[90]  H. Jin,et al.  Configuration of Redundant Sensor System and Its Fault Detection Using Parity Vector Method , 1997 .

[91]  David H. Wolpert On The Bayesian Occam Factors Argument For Occam's Razor , 1992 .

[92]  J. Gertler Fault detection and isolation using parity relations , 1997 .

[93]  A. Buja,et al.  Projection Pursuit Indexes Based on Orthonormal Function Expansions , 1993 .

[94]  Janos Gertler,et al.  Generating directional residuals with dynamic parity relations , 1995, Autom..

[95]  J. W. Hines,et al.  Plant wide sensor calibration monitoring , 1996, Proceedings of the 1996 IEEE International Symposium on Intelligent Control.

[96]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[97]  Lars Nielsen,et al.  Parity functions as universal residual generators and tool for fault detectability analysis , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[98]  Aleksey M. Urmanov,et al.  Application of Information Complexity in Principal Component Regression Modeling of the Venturi Meter Drift , 2001 .

[99]  S. Joe Qin,et al.  A unified geometric approach to process and sensor fault identification and reconstruction : The unidimensional fault case , 1998 .

[100]  M. Nyberg,et al.  A Minimal Polynomial Basis Solution to Residual Generation for Fault Diagnosis in Linear Systems , 1999 .

[101]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[102]  Lucas C. Parra,et al.  Convolutive blind separation of non-stationary sources , 2000, IEEE Trans. Speech Audio Process..

[103]  J. C. Deckert,et al.  Dual-Sensor Failure Identification Using Analytic Redundancy , 1979 .

[104]  Xiao Xu,et al.  Sensor Validation and Fault Detection Using Neural Networks , 1999 .

[105]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[106]  Richard M. Everson,et al.  Independent Component Analysis: Principles and Practice , 2001 .

[107]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[108]  Andrei V. Gribok,et al.  Heuristic, systematic, and informational regularization for process monitoring , 2002, Int. J. Intell. Syst..