Complex fields in heterogeneous materials under shock: modeling, simulation and analysis

In this mini-review we summarize the progress of modeling, simulation and analysis of shock responses of heterogeneous materials in our group in recent years. The basic methodology is as below. We first decompose the problem into different scales. Construct/ Choose a model according to the scale and main mechanisms working at that scale. Perform numerical simulations using the relatively mature schemes. The physical information is transferred between neighboring scales in such a way: The statistical information of results in smaller scale contributes to establishing the constitutive equation in larger one. Except for the microscopic Molecular Dynamics (MD) model, both the mesoscopic and macroscopic models can be further classified into two categories, solidic and fluidic models, respectively. The basic ideas and key techniques of the MD, material point method and discrete Boltzmann method are briefly reviewed. Among various schemes used in analyzing the complex fields and structures, the morphological analysis and the home-built software, GISO, are briefly introduced. New observations are summarized for scales from the larger to the smaller.

[1]  Akira Onuki Dynamic van der waals theory of two-phase fluids in heat flow. , 2005, Physical review letters.

[2]  F. Massaioli,et al.  Scaling and hydrodynamic effects in lamellar ordering , 2004, cond-mat/0404205.

[3]  J. Brackbill,et al.  The material-point method for granular materials , 2000 .

[4]  Sauro Succi,et al.  A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows , 2015, J. Comput. Phys..

[5]  Mark F. Horstemeyer,et al.  Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence , 2000 .

[6]  Xijun Yu,et al.  Simulation study on cavity growth in ductile metal materials under dynamic loading , 2013, 1309.0095.

[7]  Mohammed A. Zikry,et al.  Void growth and interaction in crystalline materials , 2001 .

[8]  Guangcai Zhang,et al.  Generalized interpolation material point approach to high melting explosive with cavities under shock , 2007, 0710.2181.

[9]  Lynn Seaman,et al.  Dynamic failure of solids , 1987 .

[10]  J. N. Johnson Dynamic fracture and spallation in ductile solids , 1981 .

[11]  F. Delannay,et al.  Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars , 1998 .

[12]  J. N. Johnson,et al.  Micromechanics of spall and damage in tantalum , 1996 .

[13]  Xu Ai-guo,et al.  Cellular Automata Model for Elastic Solid Material , 2013 .

[14]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[15]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[16]  Xiong Zhang,et al.  An explicit material point finite element method for hyper‐velocity impact , 2006 .

[17]  Peter Matic,et al.  Modeling void coalescence during ductile fracture of a steel , 2004 .

[18]  T. Zohdi,et al.  On perfectly plastic flow in porous material , 2002 .

[19]  D. Koss,et al.  Modeling the ductile fracture process of void coalescence by void-sheet formation , 2001 .

[20]  Xian-geng Zhao,et al.  Morphology and growth speed of hcp domains during shock-induced phase transition in iron , 2014, Scientific Reports.

[21]  Aiguo Xu,et al.  Morphologies and flow patterns in quenching of lamellar systems with shear. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Guang-cai Zhang,et al.  Dynamic Fracture of Ductile Metals at High Strain Rate , 2013 .

[23]  Xu Ai-Guo,et al.  Three-Dimensional Multi-mesh Material Point Method for Solving Collision Problems , 2008 .

[24]  Jianshi Zhu,et al.  Three-dimensional multi-mesh material point method for solving collision problems , 2007, 0708.3532.

[25]  Sauro Succi,et al.  Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects. , 2015, Soft matter.

[26]  Guangcai Zhang,et al.  Material-point simulation of cavity collapse under shock , 2007, 0706.2521.

[27]  K. Baeck The analytic gradient for the equation-of-motion coupled-cluster energy with a reduced molecular orbital space: An application for the first excited state of formaldehyde , 2000 .

[28]  Albert C. Holt,et al.  Static and Dynamic Pore‐Collapse Relations for Ductile Porous Materials , 1972 .

[29]  G. Ettema,et al.  The Role of Power Fluctuations in the Preference of Diagonal vs. Double Poling Sub-Technique at Different Incline-Speed Combinations in Elite Cross-Country Skiers , 2017, Front. Physiol..

[30]  Hua Li,et al.  Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Aiguo Xu,et al.  Phase-separating binary fluids under oscillatory shear. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Guo Lu,et al.  General Index and Its Application in MD Simulations , 2012 .

[33]  Guo Lu,et al.  Cluster identification and characterization of physical fields , 2010, ArXiv.

[34]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[35]  Holyst,et al.  High genus periodic gyroid surfaces of nonpositive Gaussian curvature. , 1996, Physical review letters.

[36]  Ferdinando Auricchio,et al.  On a new integration scheme for von‐Mises plasticity with linear hardening , 2003 .

[37]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[38]  S. Succi,et al.  Polar-coordinate lattice Boltzmann modeling of compressible flows. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Xijun Yu,et al.  Lattice Boltzmann modeling and simulation of compressible flows , 2012, 1209.3542.

[40]  A. Zurek,et al.  Void Coalescence Model for Ductile Damage , 2002 .

[41]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[42]  A. Xu,et al.  Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number , 2012 .

[43]  Xu Ai-Guo,et al.  Dynamics and Thermodynamics of Porous HMX-like Material Under Shock ∗ , 2009 .

[44]  Ruiping Zhao,et al.  Cardioprotective Effects of SIRT6 in a Mouse Model of Transverse Aortic Constriction-Induced Heart Failure , 2017, Front. Physiol..

[45]  小林 昭一 "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .

[46]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[47]  Deborah Sulsky,et al.  Mass matrix formulation of the FLIP particle-in-cell method , 1992 .

[48]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[49]  A. Xu,et al.  Multiple-distribution-function lattice Boltzmann kinetic model for combustion phenomena , 2014 .

[50]  J Hong,et al.  Effects of gravity and nonlinearity on the waves in the granular chain. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  James M. Finley,et al.  Unilateral Eccentric Contraction of the Plantarflexors Leads to Bilateral Alterations in Leg Dexterity , 2016, Frontiers in Physiology.

[52]  Ping Zhang,et al.  Morphological characterization of shocked porous material , 2009, 0904.0130.

[53]  Guangcai Zhang,et al.  Multiple-relaxation-time lattice Boltzmann kinetic model for combustion. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  E T Seppälä,et al.  Onset of void coalescence during dynamic fracture of ductile metals. , 2004, Physical review letters.

[55]  Hua Li,et al.  Dynamical similarity in shock wave response of porous material: From the view of pressure , 2011, Comput. Math. Appl..

[56]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[57]  Michael Ortiz,et al.  Effect of Strain Hardening and Rate Sensitivity on the Dynamic Growth of a Void in a Plastic Material , 1992 .

[58]  R. Becker The effect of porosity distribution on ductile failure , 1987 .

[59]  Heinrich Müller,et al.  Interpolation and Approximation of Surfaces from Three-Dimensional Scattered Data Points , 1997, Scientific Visualization Conference (dagstuhl '97).

[60]  Xu Ai-Guo Power-Law Behavior in Signal Scattering Process in Vertical Granular Chain with Light Impurities* , 2001 .

[61]  Hua Li,et al.  Temperature pattern dynamics in shocked porous materials , 2010 .

[62]  Victor Sofonea,et al.  Morphology of spinodal decomposition , 1997 .

[63]  A. Xu,et al.  Cellular automata model for elastic solid material , 2012, 1211.1732.

[64]  Viggo Tvergaard,et al.  Two mechanisms of ductile fracture: void by void growth versus multiple void interaction , 2002 .

[65]  Aiguo Xu,et al.  Nondestructive identification of impurities in granular medium , 2002 .

[66]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[67]  Mecke Morphological characterization of patterns in reaction-diffusion systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Guang-cai Zhang,et al.  A Frank scheme of determining the Burgers vectors of dislocations in a FCC crystal , 2013 .

[69]  D. Benson The Numerical Simulation of the Dynamic Compaction of Powders , 1997 .

[70]  Ranga Komanduri,et al.  Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method , 2007 .

[71]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[72]  V. Nesterenko,et al.  Dynamics of Heterogeneous Materials , 2001 .

[73]  Duane D. Johnson,et al.  bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: Coupled shuffle and shear modes , 2009 .

[74]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[75]  A Lamura,et al.  Lattice Boltzmann simulation of thermal nonideal fluids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  John A. Nairn,et al.  Three-Dimensional Dynamic Fracture Analysis Using the Material Point Method , 2006 .

[77]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[78]  R. Hixson,et al.  Microstructure of depleted uranium under uniaxial strain conditions , 1997 .

[79]  Hua Li,et al.  Lattice Boltzmann model for combustion and detonation , 2013, 1304.7421.

[80]  K. T. Ramesh,et al.  The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading , 2003 .

[81]  Xian-geng Zhao,et al.  Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture , 2014, Scientific Reports.

[82]  A. Xu,et al.  Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena , 2013, 1308.0653.

[83]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[84]  Donald A. Koss,et al.  Ductile failure as a result of a void-sheet instability: experiment and computational modeling , 1998 .

[85]  Xiong Zhang,et al.  Comparison study of MPM and SPH in modeling hypervelocity impact problems , 2009 .

[86]  A. Xu,et al.  GENERAL: Simulation Study of Shock Reaction on Porous Material , 2009, 0904.0135.

[87]  Shock wave response of porous materials: from plasticity to elasticity , 2010, 1005.0908.

[88]  Ping Zhang,et al.  Nucleation and growth mechanisms of hcp domains in compressed iron , 2014, Scientific Reports.

[89]  A. Aksimentiev,et al.  Scaling properties of the morphological measures at the early and intermediate stages of the spinodal decomposition in homopolymer blends , 2000 .