Development of rolling magnetic microrobots

This paper reports magnetic microrobots with rolling capability. A magnetic object subjected to an externally rotating magnetic field would be rotated due to the tendency of alignment between its internal magnetization and the field. Based on this principle, a magnetic microrobot in a spherical body with a diameter of several hundred microns was designed and fabricated. To remotely power and control the microrobot, a rotating magnet was used to generate a rotating magnetic field. Driven by this field, the microrobot can freely roll on three-dimensional surfaces. These surfaces can be in air, water or silicon oil. In a dry environment, a microrobot with a diameter of 440 µm achieved a maximum linear speed of 13.2 mm s−1.

[1]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[2]  A. K. Agarwal,et al.  Programmable autonomous micromixers and micropumps , 2005, Journal of Microelectromechanical Systems.

[3]  Dominic R. Frutiger,et al.  Wireless resonant magnetic microactuator for untethered mobile microrobots , 2008 .

[4]  K. Pister,et al.  A planar air levitated electrostatic actuator system , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[5]  Russell M. Taylor,et al.  Thermally actuated untethered impact-driven locomotive microdevices , 2006 .

[6]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.

[7]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[8]  Gou Xiao-fan,et al.  Analytic expression of magnetic field distribution of rectangular permanent magnets , 2004 .

[9]  J. Andrew Yeh,et al.  A rolling locomotion method for untethered magnetic microrobots , 2010 .

[10]  Hiroyuki Fujita,et al.  A conveyance system using air flow based on the concept of distributed micro motion systems , 1994 .

[11]  M. Sitti,et al.  Multiple magnetic microrobot control using electrostatic anchoring , 2009 .

[12]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[13]  Metin Sitti,et al.  Miniature devices: Voyage of the microrobots , 2009, Nature.

[14]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[15]  Jake J. Abbott,et al.  Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies , 2007, IEEE Transactions on Robotics.

[16]  M. Mack,et al.  Minimally invasive and robotic surgery. , 2001, JAMA.

[17]  Michaël Gauthier,et al.  An electromagnetic micromanipulation system for single-cell manipulation , 2002 .

[18]  H. Fujita,et al.  Design, fabrication, and control of MEMS-based actuator arrays for air-flow distributed micromanipulation , 2006, Journal of Microelectromechanical Systems.

[19]  Craig D. McGray,et al.  Power delivery and locomotion of untethered microactuators , 2003 .

[20]  Chang Liu,et al.  Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. , 2004, Lab on a chip.

[21]  Sheng-Chih Shen,et al.  Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling , 2009 .

[22]  Keith J. Rebello,et al.  Applications of MEMS in surgery , 2004, Proceedings of the IEEE.

[23]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[24]  Russell H. Taylor,et al.  A Perspective on Medical Robotics , 2006, Proceedings of the IEEE.