Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon.

TiO2 is being widely explored as an active resistive switching (RS) material for resistive random access memory. We report a detailed analysis of the RS characteristics of single-crystal anatase-TiO2 thin films epitaxially grown on silicon by atomic layer deposition. We demonstrate that although the valence change mechanism is responsible for the observed RS, single-crystal anatase-TiO2 thin films show electrical characteristics that are very different from the usual switching behaviors observed for polycrystalline or amorphous TiO2 and instead very similar to those found in electrochemical metallization memory. In addition, we demonstrate highly stable and reproducible quantized conductance that is well controlled by application of a compliance current and that suggests the localized formation of conducting Magnéli-like nanophases. The quantized conductance observed results in multiple well-defined resistance states suitable for implementation of multilevel memory cells.

[1]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[2]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[3]  R. Waser,et al.  Quantum conductance and switching kinetics of AgI-based microcrossbar cells , 2012, Nanotechnology.

[4]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[5]  A. Selloni,et al.  Magnéli-like phases in epitaxial anatase TiO 2 thin films , 2012 .

[6]  J. Gilman,et al.  Nanotechnology , 2001 .

[7]  Seungjun Kim,et al.  Flexible memristive memory array on plastic substrates. , 2011, Nano letters.

[8]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[9]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[10]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[11]  R. Waser,et al.  Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. , 2012, Nature materials.

[12]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[13]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[14]  T. Madey,et al.  TITANIUM AND REDUCED TITANIA OVERLAYERS ON TITANIUM DIOXIDE (110) , 1995 .

[15]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[16]  A. Demkov,et al.  Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition , 2012 .

[17]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[18]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[19]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[20]  A. J. Kenyon,et al.  Quantum Conductance in Silicon Oxide Resistive Memory Devices , 2013, Scientific Reports.

[21]  C. Cagli,et al.  Quantum-size effects in hafnium-oxide resistive switching , 2013 .

[22]  Seong-Geon Park,et al.  Impact of Oxygen Vacancy Ordering on the Formation of a Conductive Filament in $\hbox{TiO}_{2}$ for Resistive Switching Memory , 2011, IEEE Electron Device Letters.

[23]  Jordi Suñé,et al.  Voltage and Power-Controlled Regimes in the Progressive Unipolar RESET Transition of HfO2-Based RRAM , 2013, Scientific Reports.

[24]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[25]  Yiwei Liu,et al.  Observation of Conductance Quantization in Oxide‐Based Resistive Switching Memory , 2012, Advanced materials.

[26]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[27]  Jun Yeong Seok,et al.  Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures , 2010, Nanotechnology.

[28]  Alexander A. Demkov,et al.  Growth of epitaxial oxides on silicon using atomic layer deposition: Crystallization and annealing of TiO2 on SrTiO3-buffered Si(001) , 2012 .

[29]  Masaaki Niwa,et al.  ON-OFF switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels , 2012 .

[30]  E. Miranda,et al.  Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory , 2013 .

[31]  D. Ielmini,et al.  Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM , 2011, IEEE Transactions on Electron Devices.

[32]  Byung Joon Choi,et al.  A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure , 2011, Nanotechnology.

[33]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[34]  T. Hasegawa,et al.  Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von‐Neumann Computers , 2012, Advanced materials.

[35]  Chang Soo Kim,et al.  In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices , 2013, Nanotechnology.

[36]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[37]  E. Yu,et al.  High ON/OFF Ratio and Quantized Conductance in Resistive Switching of ${\rm TiO}_{2}$ on Silicon , 2013, IEEE Electron Device Letters.

[38]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[39]  Doo Seok Jeong,et al.  Titanium dioxide thin films for next-generation memory devices , 2013 .

[40]  Jan van den Hurk,et al.  Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.

[41]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[42]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[43]  F. Zeng,et al.  Conductance quantization in oxygen-anion-migration-based resistive switching memory devices , 2013 .

[44]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[45]  Cheol Seong Hwang,et al.  Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM , 2013, Scientific Reports.

[46]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[47]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[48]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.