Scalable Bayesian nonparametric dictionary learning

We derive a stochastic EM algorithm for scalable dictionary learning with the beta-Bernoulli process, a Bayesian nonpara-metric prior that learns the dictionary size in addition to the sparse coding of each signal. The core EM algorithm provides a new way for doing inference in nonparametric dictionary learning models and has a close similarity to other sparse coding methods such as K-SVD. Our stochastic extension for handling large data sets is closely related to stochastic variational inference, with the stochastic update for one parameter exactly that found using SVI. We show our algorithm compares well with K-SVD and total variation minimization on a denoising problem using several images.

[1]  Geoffrey E. Hinton,et al.  The EM algorithm for mixtures of factor analyzers , 1996 .

[2]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[3]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[4]  Léon Bottou,et al.  On-line learning and stochastic approximations , 1999 .

[5]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[6]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[7]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[8]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[9]  Xinhao Liu,et al.  Single-Image Noise Level Estimation for Blind Denoising , 2013, IEEE Transactions on Image Processing.

[10]  Qin Lin,et al.  Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI , 2013, IEEE Transactions on Image Processing.

[11]  Michael I. Jordan,et al.  A constructive definition of the beta process , 2016, 1604.00685.

[12]  L. Eon Bottou Online Learning and Stochastic Approximations , 1998 .

[13]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[14]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[15]  Chong Wang,et al.  Variational inference in nonconjugate models , 2012, J. Mach. Learn. Res..