Representation theorems for L-fuzzy quantities

Abstract In this paper representation theorems are given for L -fuzzy quantities, which permit a better understanding of fuzziness. In particular representation theorems due to Negoita and Ralescu [17] and to Sherwood and Taylor [23] are extended to the scope of complete and Brouwerian lattices.

[1]  Juhani Nieminen,et al.  On the algebraic structure of fuzzy sets of type 2 , 1977, Kybernetika.

[2]  M. J. Frank,et al.  Probabilistic topological spaces , 1971 .

[3]  D. A. Kappos,et al.  Probability algebras and stochastic spaces , 1969 .

[4]  C. C. Chang,et al.  On the representation of α-complete lattices , 1962 .

[5]  J. Goguen L-fuzzy sets , 1967 .

[6]  Milan Mares,et al.  How to handle fuzzy-quantities? , 1977, Kybernetika.

[7]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[8]  George N. Raney,et al.  Completely distributive complete lattices , 1952 .

[9]  U. Höhle Probabilistic uniformization of fuzzy topologies , 1978 .

[10]  Hung T. Nguyen,et al.  On fuzziness and linguistic probabilities , 1977 .

[11]  G. Matheron Random Sets and Integral Geometry , 1976 .

[12]  Milan Mares,et al.  On fuzzy-quantities with real and integer values , 1977, Kybernetika.

[13]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[14]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[15]  B. Schweizer,et al.  Multiplications on the space of probability distribution functions , 1975 .

[16]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[17]  Dan A. Ralescu,et al.  REPRESENTATION THEOREMS FOR FUZZY CONCEPTS , 1975 .

[18]  László Fuchs,et al.  Teilweise geordnete algebraische Strukturen , 1966 .

[19]  P. Meyer,et al.  Probabilités et potentiel , 1966 .