MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS-APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY

With inverse problems there are often several unknown distributed parameters of which only one may be of interest. Since assigning incorrect fixed values to the uninteresting parameters usually leads to a severely erroneous model, one is forced to estimate all distributed parameters simultaneously. This may increase the computational complexity of the problem significantly. In the Bayesian framework, all unknowns are generally treated as random variables and estimated simultaneously and all uncertainties can be modeled systematically. Recently, the approximation error approach has been proposed for handling uncertainty and model-reduction-related errors in the models. In this approach approximate marginalization of these errors is carried out before the estimation of the interesting variables. In this paper we discuss the adaptation of the approximation error approach to the marginalization of uninteresting distributed parameters. As an example, we consider the marginalization of scattering coefficient in diffuse optical tomography.

[1]  W. Kinzelbach,et al.  Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem , 2008 .

[2]  J. Kaipio,et al.  The Bayesian approximation error approach for electrical impedance tomography—experimental results , 2007 .

[3]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[4]  Simon R. Arridge,et al.  An approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography , 2009 .

[5]  Dean S. Oliver,et al.  Sequential assimilation of 4D seismic data for reservoir description using the ensemble Kalman filter , 2006 .

[6]  Jari P. Kaipio,et al.  Importance sampling approach for the nonstationary approximation error method , 2010 .

[7]  Akhil Datta-Gupta,et al.  Streamline Assisted Ensemble Kalman Filter for Rapid and Continuous Reservoir Model Updating , 2006 .

[8]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[9]  Erkki Somersalo,et al.  Estimation of optical absorption in anisotropic background , 2002 .

[10]  Louis J. Durlofsky,et al.  Accurate Subgrid Models for Two-Phase Flow in Heterogeneous Reservoirs , 2004 .

[11]  J. Kaipio,et al.  Approximation error analysis in nonlinear state estimation with an application to state-space identification , 2007 .

[12]  Richard Haberman,et al.  Chaotic scattering and the n-bounce resonance in solitary-wave interactions. , 2007, Physical review letters.

[13]  J. Gómez-Hernández,et al.  To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology , 1998 .

[14]  Yalchin Efendiev,et al.  A Generalized Convection-Diffusion Model for Subgrid Transport in Porous Media , 2003, Multiscale Model. Simul..

[15]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[16]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[17]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[18]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[19]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[20]  L.J. Durlofsky,et al.  Scale up of heterogeneous three dimensional reservoir descriptions , 1996 .

[21]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[22]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[23]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[24]  Yalchin Efendiev,et al.  Multiscale data integration using coarse-scale models☆ , 2005 .

[25]  Arnold W. Heemink,et al.  Multiscale ensemble filtering for reservoir engineering applications , 2009 .

[26]  Behnam Jafarpour,et al.  History matching with an ensemble Kalman filter and discrete cosine parameterization , 2008 .

[27]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[28]  Dean S. Oliver,et al.  The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models , 2006 .

[29]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[30]  Erkki Somersalo,et al.  Impedance imaging and Markov chain Monte Carlo methods , 1997, Optics & Photonics.

[31]  S. Arridge Optical tomography in medical imaging , 1999 .

[32]  Jae-Hun Jung,et al.  A Spectral Collocation Approximation For The Radial-Infall Of A Compact Object Into A Schwarzschild Black Hole , 2007, 0711.2545.

[33]  Richard H. Price,et al.  Head-on collisions of black holes: The particle limit , 1997 .

[34]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[35]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[36]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[37]  Yalchin Efendiev,et al.  An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration , 2005 .

[38]  Wai-Sun Don,et al.  A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks , 2009, J. Comput. Phys..

[39]  Dean S. Oliver,et al.  History Matching of the PUNQ-S3 Reservoir Model Using the Ensemble Kalman Filter , 2004 .

[40]  Stefan Finsterle,et al.  Approximation errors and truncation of computational domains with application to geophysical tomography , 2007 .

[41]  Christopher J. BISHOPAbstra,et al.  Orthogonal Functions , 2022 .

[42]  Louis J. Durlofsky,et al.  Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques , 1998 .

[43]  Tor Arne Johansen,et al.  Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter , 2005 .

[44]  Jari P. Kaipio,et al.  Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography , 2011, IEEE Transactions on Medical Imaging.

[45]  Jari P. Kaipio,et al.  Model reduction in state identification problems with an application to determination of thermal parameters , 2009 .

[46]  Yalchin Efendiev,et al.  Numerical modeling of subgrid heterogeneity in two phase flow simulations , 2002 .

[47]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[48]  S. Dance Issues in high resolution limited area data assimilation for quantitative precipitation forecasting , 2004 .

[49]  T. Hou,et al.  Analysis of upscaling absolute permeability , 2002 .

[50]  Yan Chen,et al.  Data assimilation for transient flow in geologic formations via ensemble Kalman filter , 2006 .

[51]  References , 1971 .

[52]  David Lumley,et al.  Time-lapse seismic reservoir monitoring , 2001 .

[53]  S R Arridge,et al.  Recent advances in diffuse optical imaging , 2005, Physics in medicine and biology.

[54]  B. Engquist,et al.  Discretization of Dirac delta functions in level set methods , 2005 .

[55]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[56]  Sigurd Ivar Aanonsen,et al.  Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter , 2005 .

[57]  Dongbin Xiu,et al.  Galerkin method for wave equations with uncertain coefficients , 2008 .

[58]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[59]  Erkki Somersalo,et al.  A modelling error approach for the estimation of optical absorption in the presence of anisotropies. , 2004, Physics in medicine and biology.

[60]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[61]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[62]  Xian-Huan Wen,et al.  Real-Time Reservoir Model Updating Using Ensemble Kalman Filter , 2005 .

[63]  David A Boas,et al.  Assessing the future of diffuse optical imaging technologies for breast cancer management. , 2008, Medical physics.

[64]  E. Somersalo,et al.  Compensation for geometric mismodelling by anisotropies in optical tomography. , 2005, Optics express.

[65]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[66]  J. Kaipio,et al.  Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography , 2009 .

[67]  S. Aanonsen,et al.  History Matching Using Time-lapse Seismic (HUTS) , 2003 .

[68]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[69]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[70]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[71]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[72]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[73]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[74]  Geoff K. Nicholls,et al.  Sampling Conductivity Images via MCMC , 2007 .

[75]  M. Schweiger,et al.  The finite element method for the propagation of light in scattering media: boundary and source conditions. , 1995, Medical physics.

[76]  J. Nitao,et al.  Electrical resistivity tomography of vadose water movement , 1992 .

[77]  Y. Kivshar,et al.  Resonant kink-impurity interactions in the sine-Gordon model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[78]  Geir Nævdal,et al.  Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter , 2005 .

[79]  Jeffrey L. Anderson EXPLORING THE NEED FOR LOCALIZATION IN ENSEMBLE DATA ASSIMILATION USING A HIERARCHICAL ENSEMBLE FILTER , 2007 .

[80]  E. Somersalo,et al.  State estimation with fluid dynamical evolution models in process tomography - an application to impedance tomography , 2001 .

[81]  Akhil Datta-Gupta,et al.  A Multiscale Approach to Production Data Integration Using Streamline Models , 1999 .

[82]  Jari P. Kaipio,et al.  Aristotelian prior boundary conditions , 2006 .

[83]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[84]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[85]  L. Durlofsky,et al.  A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media , 1997 .

[86]  Alexander Y. Sun,et al.  Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data , 2009 .

[87]  George Em Karniadakis,et al.  Supersensitivity due to uncertain boundary conditions , 2004 .

[88]  Jae-Hun Jung,et al.  Collocation Methods for Hyperbolic Partial Differential Equations with Singular Sources , 2009 .

[89]  A. Lehikoinen,et al.  Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties , 2010 .

[90]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[91]  Akhil Datta-Gupta,et al.  Multiscale Data Integration Using Markov Random Fields , 2000 .

[92]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .