Rational Drug Design Using Integrative Structural Biology.

Modern drug discovery and design approaches rely heavily on high-throughput methods and state-of-the-art infrastructures with robotic facilities and sophisticated platforms. However, the anticipated research output that would eventually lead to new drugs with minimal or no side effects to the market has not been achieved. Despite the vast amount of information generated, very little is converted to knowledge and even less is capitalized for cross-discipline research actions. Therefore, the need for re-launching rational approaches has become apparent. Here we present an overview of the new trends in rational drug design using integrative structural biology with emphasis on X-ray protein crystallography and small molecules as ligands. With the aim to increase researchers' awareness on the available possibilities to perform front line research, we also underline the benefits and enhanced prospects offered to the scientific community, through access to research infrastructures.

[1]  Fabio Galbusera,et al.  Semiautomated 3D Spine Reconstruction from Biplanar Radiographic Images: Prediction of Intervertebral Loading in Scoliotic Subjects , 2017, Front. Bioeng. Biotechnol..

[2]  J. Marles-Wright,et al.  Characterisation of a New Family of Carboxyl Esterases with an OsmC Domain , 2016, PloS one.

[3]  Harren Jhoti,et al.  High-throughput crystallography for lead discovery in drug design , 2002, Nature Reviews Drug Discovery.

[4]  M. Kimple,et al.  Overview of Affinity Tags for Protein Purification , 2004, Current protocols in protein science.

[5]  H. Besir,et al.  A new method to customize protein expression vectors for fast, efficient and background free parallel cloning , 2013, BMC Biotechnology.

[6]  N. Greenfield Using circular dichroism spectra to estimate protein secondary structure , 2007, Nature Protocols.

[7]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[8]  Vincent Le Guilloux,et al.  Fpocket: An open source platform for ligand pocket detection , 2009, BMC Bioinformatics.

[9]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[10]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[11]  Jorge Navaza,et al.  [33] AMoRe: An automated molecular replacement program package. , 1997, Methods in enzymology.

[12]  D. E. Nichols,et al.  Crystal Structure of an LSD-Bound Human Serotonin Receptor , 2017, Cell.

[13]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[14]  Vaibhav Upadhyay,et al.  Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process , 2015, Microbial Cell Factories.

[15]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[16]  M. Bolognesi,et al.  Structure and Computation in Immunoreagent Design: From Diagnostics to Vaccines. , 2017, Trends in biotechnology.

[17]  Chris de Graaf,et al.  KLIFS: a structural kinase-ligand interaction database , 2015, Nucleic Acids Res..

[18]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[19]  J. Scannell,et al.  Diagnosing the decline in pharmaceutical R&D efficiency , 2012, Nature Reviews Drug Discovery.

[20]  Stefan Richter,et al.  TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets , 2017, Nucleic Acids Res..

[21]  E. Berger,et al.  Improving solubility of catalytic domain of human beta-1,4-galactosyltransferase 1 through rationally designed amino acid replacements. , 2001, European journal of biochemistry.

[22]  Katie R. Mitchell-Koch,et al.  In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function , 2017, Catalysts.

[23]  Faez Iqbal Khan,et al.  The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties , 2017, Front. Bioeng. Biotechnol..

[24]  Alexander S. Bayden,et al.  The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. , 2017, Journal of medicinal chemistry.

[25]  Gail J. Bartlett,et al.  Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families. , 2005, Journal of molecular biology.

[26]  I. D. de Esch,et al.  KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. , 2014, Journal of medicinal chemistry.

[27]  D. Crommelin,et al.  Reflections on the Future of Pharmaceutical Public-Private Partnerships: From Input to Impact , 2017, Pharmaceutical Research.

[28]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[29]  E. Mikros,et al.  Discovery of the Glycogen Phosphorylase-Modulating Activity of a Resveratrol Glucoside by Using a Virtual Screening Protocol Optimized for Solvation Effects , 2015, Planta Medica.

[30]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[31]  Claudio N. Cavasotto,et al.  In silico drug discovery and design : theory, methods, challenges, and applications , 2015 .

[32]  Søren Brunak,et al.  Prediction of Glycosylation Across the Human Proteome and the Correlation to Protein Function , 2001, Pacific Symposium on Biocomputing.

[33]  Renxiao Wang,et al.  Analysis of Ligand-Bound Water Molecules in High-Resolution Crystal Structures of Protein-Ligand Complexes , 2007, J. Chem. Inf. Model..

[34]  Mallur S. Madhusudhan,et al.  Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins , 2013, Nucleic Acids Res..

[35]  R. Owens Structural Proteomics , 2015, Methods in Molecular Biology.

[36]  F. Monti,et al.  A New Potent Inhibitor of Glycogen Phosphorylase Reveals the Basicity of the Catalytic Site. , 2017, Chemistry.

[37]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[38]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[39]  Henry Lin,et al.  Structure-based discovery of opioid analgesics with reduced side effects , 2016, Nature.

[40]  J. Koehn,et al.  High-Throughput Protein Production (HTPP): a review of enabling technologies to expedite protein production. , 2009, Methods in molecular biology.

[41]  Janet M. Thornton,et al.  The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data , 2004, Nucleic Acids Res..

[42]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[43]  Gerhard Klebe,et al.  Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. , 2003, Journal of molecular biology.

[44]  J. Janson Protein purification: Principles, high resolution methods, and applications , 1989 .

[45]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[46]  Bostjan Kobe,et al.  Structural Proteomics: High-Throughput Methods , 2008 .

[47]  Jack W Scannell,et al.  When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis , 2016, PloS one.

[48]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[49]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[50]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[51]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[52]  R. Rappuoli,et al.  Structural vaccinology starts to deliver , 2012, Nature Reviews Microbiology.

[53]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[54]  S. Brunak,et al.  Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology , 2013, The EMBO journal.

[55]  Frank von Delft,et al.  Squeezing the most from every crystal: the fine details of data collection , 2013, Acta crystallographica. Section D, Biological crystallography.

[56]  H. Berman The Protein Data Bank: a historical perspective. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[57]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[58]  Alexander McPherson,et al.  Introduction to protein crystallization. , 2014, Acta crystallographica. Section F, Structural biology communications.

[59]  Jie Liang,et al.  CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues , 2006, Nucleic Acids Res..