Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies

We investigate the relationship between black hole accretion and star formation in a sample of 453 z ≈ 0.3 type 1 active galactic nuclei (AGNs). We use available CO observations to demonstrate that the combination of nebular dust extinction and metallicity provides reliable estimates of the molecular gas mass even for the host galaxies of type 1 AGNs. Consistent with other similar but significantly smaller samples, we reaffirm the notion that powerful AGNs have comparable gas content as nearby star-forming galaxies and that AGN feedback does not deplete the host of cold gas instantaneously. We demonstrate that while the strong correlation between star formation rate and black hole accretion rate is in part driven by the mutual dependence of these parameters on molecular gas mass, the star formation rate and black hole accretion rate are still weakly correlated after removing the dependence of star formation rate on molecular gas mass. This, together with a positive correlation between star formation efficiency and black hole accretion rate, may be interpreted as evidence for positive AGN feedback.

[1]  K. Jahnke,et al.  A Significant Excess in Major Merger Rate for AGNs with the Highest Eddington Ratios at z < 0.2 , 2020, The Astrophysical Journal.

[2]  L. Ho,et al.  Gas Content Regulates the Life Cycle of Star Formation and Black Hole Accretion in Galaxies , 2020, The Astrophysical Journal.

[3]  L. Ho,et al.  AGN Feedback and Star Formation of Quasar Host Galaxies: Insights from the Molecular Gas , 2020, The Astrophysical Journal.

[4]  F. Mannucci,et al.  Properties of the multiphase outflows in local (ultra)luminous infrared galaxies , 2020, 2006.13232.

[5]  L. Ho,et al.  The Interplay between Star Formation and Black Hole Accretion in Nearby Active Galaxies , 2020, The Astrophysical Journal.

[6]  L. Ho,et al.  An ALMA CO(2–1) Survey of Nearby Palomar–Green Quasars , 2019, The Astrophysical Journal Supplement Series.

[7]  L. Ho,et al.  Intermediate-Mass Black Holes , 2019, 1911.09678.

[8]  R. Assef,et al.  A Catalog of AGN Host Galaxies Observed with HST/ACS: Correlations between Star Formation and AGN Activity , 2019, The Astrophysical Journal.

[9]  B. Mobasher,et al.  Spatially Resolved Properties of Galaxies from CANDELS+MUSE: Radial Extinction Profile and Insights on Quenching , 2019, The Astrophysical Journal.

[10]  L. Ho,et al.  Dirt-cheap Gas Scaling Relations: Using Dust Absorption, Metallicity, and Galaxy Size to Predict Gas Masses for Large Samples of Galaxies , 2019, The Astrophysical Journal.

[11]  L. Ho,et al.  A New Calibration of Star Formation Rate in Galaxies Based on Polycyclic Aromatic Hydrocarbon Emission , 2019, The Astrophysical Journal.

[12]  Hongyan Zhou,et al.  A Comprehensive and Uniform Sample of Broad-line Active Galactic Nuclei from the SDSS DR7 , 2019, The Astrophysical Journal Supplement Series.

[13]  L. Ho,et al.  The Role of Major Mergers and Nuclear Star Formation in Nearby Obscured Quasars , 2019, The Astrophysical Journal.

[14]  D. Sanders,et al.  Multi-wavelength Properties of Type 1 and Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey , 2019, The Astrophysical Journal.

[15]  L. Ho,et al.  Testing the Evolutionary Link between Type 1 and Type 2 Quasars with Measurements of the Interstellar Medium , 2019, The Astrophysical Journal.

[16]  M. Dickinson,et al.  A Survey of Atomic Carbon [C i] in High-redshift Main-sequence Galaxies , 2018, The Astrophysical Journal.

[17]  Yue Shen,et al.  PyQSOFit: Python code to fit the spectrum of quasars , 2018 .

[18]  J. Woo,et al.  A Census of Ionized Gas Outflows in Type 1 AGNs: Gas Outflows in AGNs. V. , 2018, The Astrophysical Journal.

[19]  L. Ho,et al.  The Infrared Emission and Opening Angle of the Torus in Quasars , 2018, The Astrophysical Journal.

[20]  L. Kewley,et al.  Interrogating Seyferts with NebulaBayes: Spatially Probing the Narrow-line Region Radiation Fields and Chemical Abundances , 2018, 1803.00740.

[21]  L. Ho,et al.  On the Gas Content and Efficiency of AGN Feedback in Low-redshift Quasars , 2018, 1802.08364.

[22]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[23]  D. Schiminovich,et al.  xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies , 2017, 1710.02157.

[24]  K. Schawinski,et al.  BAT AGN Spectroscopic Survey. I. Spectral Measurements, Derived Quantities, and AGN Demographics , 2017, 1707.08123.

[25]  G. Rieke,et al.  The Intrinsic Far-infrared Continua of Type-1 Quasars , 2017, 1704.06987.

[26]  J. Trump,et al.  Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate , 2017, 1704.06658.

[27]  Makoto Kishimoto,et al.  Dusty Winds in Active Galactic Nuclei: Reconciling Observations with Models , 2017 .

[28]  S. Warren,et al.  Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253 , 2017, 1701.05040.

[29]  K. Kohno,et al.  DO CIRCUMNUCLEAR DENSE GAS DISKS DRIVE MASS ACCRETION ONTO SUPERMASSIVE BLACK HOLES? , 2016, 1606.04115.

[30]  J. Moustakas,et al.  A NEW STAR FORMATION RATE CALIBRATION FROM POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES AND APPLICATION TO HIGH-REDSHIFT GALAXIES , 2016, 1601.01698.

[31]  K. Jahnke,et al.  DO THE MOST MASSIVE BLACK HOLES AT z = 2 GROW VIA MAJOR MERGERS? , 2015, 1510.08461.

[32]  F. Mannucci,et al.  BLOWIN’ IN THE WIND: BOTH “NEGATIVE” AND “POSITIVE” FEEDBACK IN AN OBSCURED HIGH-z QUASAR , 2014, 1411.4208.

[33]  M. Blanton,et al.  PRIMUS: THE RELATIONSHIP BETWEEN STAR FORMATION AND AGN ACCRETION , 2014, 1407.1975.

[34]  K. Sheth,et al.  THE EVOLUTION OF INTERSTELLAR MEDIUM MASS PROBED BY DUST EMISSION: ALMA OBSERVATIONS AT z = 0.3–2 , 2014, The Astrophysical Journal.

[35]  M. Brodwin,et al.  A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES , 2013, Proceedings of the International Astronomical Union.

[36]  J. Silk UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES , 2013, 1305.5840.

[37]  P. Cox,et al.  CO EMISSION IN OPTICALLY OBSCURED (TYPE-2) QUASARS AT REDSHIFTS z ≈ 0.1–0.4 , 2012, 1205.1962.

[38]  D. Elbaz,et al.  THE HIDDEN “AGN MAIN SEQUENCE”: EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE z ∼ 2 PRODUCING AN MBH–M* RELATION , 2012, 1204.2824.

[39]  P. Cox,et al.  MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS , 2012, 1202.6490.

[40]  G. Rieke,et al.  THE MID-INFRARED HIGH-IONIZATION LINES FROM ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES , 2010, 1010.5129.

[41]  Takamitsu Miyaji,et al.  THE BULK OF THE BLACK HOLE GROWTH SINCE z ∼ 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER–AGN CONNECTION , 2010, 1009.3265.

[42]  D. M. Alexander,et al.  THE LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: TWO MODES OF STAR FORMATION IN ACTIVE GALACTIC NUCLEUS HOSTS? , 2010, 1002.0071.

[43]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[44]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[45]  H. Schmitt,et al.  Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies , 2008, 0808.4154.

[46]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[47]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[48]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[49]  L. Ho,et al.  The Mid-Infrared Fine-Structure Lines of Neon as an Indicator of Star Formation Rate in Galaxies , 2006, astro-ph/0611856.

[50]  L. Ho,et al.  Constraints on the Star Formation Rate in Active Galaxies , 2006, astro-ph/0601316.

[51]  A. King,et al.  The AGN-Starburst Connection, Galactic Superwinds, and MBH-σ , 2005, astro-ph/0511034.

[52]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALAXIES USING THE H α EMISSION LINE , 2005 .

[53]  L. Ho [O II] Emission in Quasar Host Galaxies: Evidence for a Suppressed Star Formation Efficiency , 2005, astro-ph/0504642.

[54]  P. Hopkins,et al.  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[55]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[56]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[57]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[58]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.