Metal Availability and Bioconcentration in Plants

Heavy metals are natural elements that are found at various high background levels (Table 1.1) at different places throughout the world, due to various concentrations in the bedrock. Thus, for example, Ni, Cr and Co are abundant in serpentine soils whereas Zn, Pb and Cd are high in calamine soils. Heavy metals are persistent and cannot be deleted from the environment. Thus, a problem arises when their availability is high due to high background levels or to human activity.

[1]  M. Greger,et al.  Uptake and Physiological Effects of Cadmium in Sugar Beet (Beta vulgaris) Related to Mineral Provision , 1991 .

[2]  M. Hoenig,et al.  Determination of “normal” levels and upper limit values of trace elements in soils , 1984 .

[3]  C. Brunold,et al.  Heavy metal binding by mycorrhizal fungi , 1994 .

[4]  R. Wright,et al.  Plant-Soil Interactions at Low pH , 1991, Developments in Plant and Soil Sciences.

[5]  J. R. Sanders,et al.  The effects of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc and copper , 1988 .

[6]  P. Jackson,et al.  CHAPTER 10 – Mechanisms of Trace Metal Tolerance in Plants , 1990 .

[7]  Jaswant Singh,et al.  Effect of pH and temperature on the uptake of cadmium byLemna minor L. , 1991, Bulletin of environmental contamination and toxicology.

[8]  M. Eeckhout,et al.  Metal species transformations in soils : an analytical approach , 1990 .

[9]  J. Steffens,et al.  The Heavy Metal-Binding Peptides of Plants , 1990 .

[10]  Y. Yamada,et al.  Ion Binding by Surfaces of Isolated Cuticular Membranes. , 1964, Plant physiology.

[11]  R. Brooks,et al.  Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe , 1983 .

[12]  M. Greger,et al.  Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas , 1996 .

[13]  U. Feller,et al.  Transfer of zinc from xylem to phloem in the peduncle of wheat , 1994 .

[14]  R. L. Mitchell,et al.  UPTAKE OF CHELATED METALS BY PLANTS , 1957 .

[15]  B. Ulrich,et al.  Der Einfluß der natürlichen organischen Substanzen auf die Metallverteilung zwischen Boden und Bodenlösung in einem sauren Waldboden , 1986 .

[16]  J. M. Cutler,et al.  Characterization of cadmium uptake by plant tissue. , 1974, Plant physiology.

[17]  Professor Dr. Ulrich Förstner,et al.  Metal Pollution in the Aquatic Environment , 1979, Springer Berlin Heidelberg.

[18]  Patrick H. Brown,et al.  Influence of Redox Potential and Plant Species on the Uptake of Nickel and Cadmium from Soils , 1989 .

[19]  T. Speitel,et al.  Release of volatile mercury from vascular plants , 1974 .

[20]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[21]  E. Ladewig,et al.  Acidification in the Rhizosphere of Rape Seedlings and in Bulk Soil by Nitrification and Ammonium Uptake , 1994 .

[22]  F. Haghiri Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature , 1974 .

[23]  Werner Mathys,et al.  The Role of Malate, Oxalate, and Mustard Oil Glucosides in the Evolution of Zinc‐Resistance in Herbage Plants , 1977 .

[24]  M. Greger,et al.  Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris) , 1992 .

[25]  R. Beckett,et al.  The Control of Cadmium Uptake in the Lichen Genus Peltigera , 1984 .

[26]  A. Bradshaw,et al.  Toxic Metals in Soil-Plant Systems. , 1995 .

[27]  M. Greger,et al.  Foliar uptake of Cd by pea (Pisum sativum) and sugar beet (Beta vulgaris). , 1993, Physiologia plantarum.

[28]  M. Greger,et al.  Effects of Ca2+ and Cd2+ on the Carbohydrate Metabolism in Sugar Beet (Beta vulgaris) , 1992 .

[29]  U. Maier-Maercker «Peristomatal Transpiration» and Stomatal Movement: A controversial View , 1979 .

[30]  F. Baker,et al.  Metal Complexation in Xylem Fluid : II. THEORETICAL EQUILIBRIUM MODEL AND COMPUTATIONAL COMPUTER PROGRAM. , 1981, Plant physiology.

[31]  Wim Salomons,et al.  Metals in the Hydrocycle. , 1983 .

[32]  D. A. Cataldo,et al.  Nickel in Plants: II. Distribution and Chemical Form in Soybean Plants. , 1978, Plant physiology.

[33]  U. Feller,et al.  Effect of locally increased zinc contents on zinc transport from the flag leaf lamina to the maturing grains of wheat , 1996 .

[34]  John G. Dean,et al.  Removing heavy metals from waste water , 1972 .

[35]  E. Nieboer,et al.  The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions , 1980 .

[36]  P. Little A study of heavy metal contamination of leaf surfaces , 1973 .

[37]  H. Harmens,et al.  The role of low molecular weight organic acids in the mechanism of increased zinc tolerance in Silene vulgaris (Moench) garcke , 1994 .

[38]  K. Dietz,et al.  De novo synthesis and accumulation of apoplastic proteins in leaves of heavy metal-exposed barley seedlings , 1997 .

[39]  M. Greger,et al.  Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). I. Cd2+ uptake and sugar accumulation , 1986 .

[40]  L. Kautsky,et al.  A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity , 1995 .

[41]  T. Jaffré,et al.  STUDIES ON MANGANESE‐ACCUMULATING ALYXIA SPECIES FROM NEW CALEDONIA , 1981 .

[42]  A. Meharg Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment , 1994 .

[43]  T. R. Dudley,et al.  Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae) , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  J. Morel,et al.  Metal binding with root exudates of low molecular weight , 1988 .

[45]  D. A. Cataldo,et al.  Cadmium uptake kinetics in intact soybean plants. , 1983, Plant physiology.

[46]  P. Singer,et al.  Trace metals and metal-organic interactions in natural waters , 1973 .

[47]  Alan J. M. Baker,et al.  Free histidine as a metal chelator in plants that accumulate nickel , 1996, Nature.

[48]  David L. Johnson,et al.  Gaseous emissions of mercury from an aquatic vascular plant , 1978, Nature.

[49]  A. Baker ACCUMULATORS AND EXCLUDERS ?STRATEGIES IN THE RESPONSE OF PLANTS TO HEAVY METALS , 1981 .

[50]  J. Ownby,et al.  An ultrastructural study of the inhibition of mucilage secretion in the wheat root cap by aluminium , 1991 .

[51]  A. Kabata-Pendias Trace elements in soils and plants , 1984 .

[52]  Wolfram Köller,et al.  The Plant Cuticle , 1991 .

[53]  S. Ross Retention, transformation and mobility of toxic metals in soils , 1994 .

[54]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[55]  B. Jacoby,et al.  Absorption and translocation of Cd in bush beans (Phaseolus vulgaris) , 1984 .

[56]  M. Greger,et al.  Aluminium effects on Scenedesmus obtusiusculus with different phosphorus status. I. Mineral uptake , 1992 .

[57]  M. Wu,et al.  Cadmium accumulation by several seaweeds , 1996 .

[58]  R. R. Turner,et al.  Atmosphere-surface exchange of mercury in a forest: Results of modeling and gradient approaches , 1992 .

[59]  Bio ja ympäristötieteiden laitos,et al.  Lead, cadmium and mercury contents of Fungi in Mikkeli, SE Finland , 1981 .

[60]  Alan J. M. Baker,et al.  Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils , 2000 .

[61]  R. Salim,et al.  Effects on growth and uptake of broad beans (Vicia fabae L.) by root and foliar treatments of plant with lead and cadmium , 1992 .

[62]  M. C. White,et al.  Metal Complexation in Xylem Fluid : I. CHEMICAL COMPOSITION OF TOMATO AND SOYBEAN STEM EXUDATE. , 1981, Plant physiology.

[63]  J. Hughes,et al.  High gradient magnetic separation of some soil clays from Nigeria, Brazil and Colombia. , 1982 .

[64]  J. V. Lagerwerff UPTAKE OF CADMIUM, LEAD AND ZINC BY RADISH FROM SOIL AND AIR , 1971 .

[65]  E. A. Kirkby,et al.  Principles of Plant Nutrition , 2001, Springer Netherlands.

[66]  Wolfgang Franke,et al.  Mechanisms of Foliar Penetration of Solutions , 1967 .

[67]  I. Raskin,et al.  Phytoremediation of toxic metals : using plants to clean up the environment , 2000 .

[68]  U. W. Stephan,et al.  Nicotianamine: mediator of transport of iron and heavy metals in the phloem? , 1993 .

[69]  I. Finar,et al.  Fundamental Principles , 2019, How to Engineer Software.

[70]  M. Greger,et al.  Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum) , 1994 .

[71]  R. Beckett,et al.  A preliminary study of the factors affecting the kinetics of cadmium uptake by the liverwort Dumortiera hirsuta , 1996 .

[72]  L. Kautsky,et al.  Use of macrophytes for mapping bioavailable heavy metals in shallow coastal areas, Stockholm, Sweden , 1993 .

[73]  R. Clárk,et al.  Effects of soil temperature on root and shoot growth traits and iron deficiency chlorosis in sorghum genotypes grown on a low iron calcareous soil , 1991 .

[74]  B. Juniper,et al.  The cuticles of plants , 1971 .

[75]  H. Deuel,et al.  Kationenaustauschkapazität und Pektingehalt von Pflanzenwurzeln , 1957 .

[76]  B. Markert Plants as biomonitors - potential advantages and problems , 1994 .

[77]  D. Clarkson The Effect of Aluminium and some other Trivalent Metal Cations on Cell Division in the Root Apices of Allium cepa , 1965 .

[78]  G. Sposito The Chemistry of Soils , 2008 .

[79]  D. Kaplan,et al.  Temporal Changes in Cadmium, Thallium, and Vanadium Mobility in Soil and Phytoavailability under Field Conditions , 1998 .

[80]  R. Pearson Hard and soft acids and bases, HSAB, part 1: Fundamental principles , 1968 .

[81]  I. Munda,et al.  The Effects of Zn, Mn, and Co Accumulation on Growth and Chemical Composition of Fucus vesiculosus L under Different Temperature and Salinity Conditions , 1988 .

[82]  V. Römheld The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach , 1991 .

[83]  M. Martin,et al.  A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex , 1972 .

[84]  M. Svenningsson,et al.  Changes in cuticular transpiration rate and cuticular lipids of oat (Avena sativa) seedlings induced by water stress , 1986 .

[85]  J. Veselý,et al.  The effect of pH and atmospheric deposition on concentrations of trace elements in acidified freshwaters: A statistical approach , 1996 .

[86]  A. Pukite,et al.  TRACE ELEMENT ACCUMULATION, MOVEMENT, AND DISTRIBUTION IN THE SOIL PROFILE FROM MASSIVE APPLICATIONS OF SEWAGE SLUDGE , 1980 .

[87]  P. Hooda,et al.  Effects of time and temperature on the bioavailability of Cd and Pb from sludge‐amended soils , 1993 .

[88]  A. L. Page,et al.  Long-term sludge applications on cadmium and zinc accumulation in Swiss chard and radish , 1987 .

[89]  J. Morel,et al.  Water relations, gas exchange and amino acid content in Cd-treated lettuce , 1994 .