Distribution of mechanical stress in the Escherichia coli cell envelope.

[1]  J. Theriot,et al.  The outer membrane is an essential load-bearing element in Gram-negative bacteria , 2018, Nature.

[2]  S. Foster,et al.  Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology , 2018, Nature Communications.

[3]  M. Beeby,et al.  Communication across the bacterial cell envelope depends on the size of the periplasm , 2017, PLoS biology.

[4]  V. Rosilio,et al.  Disruption of Asymmetric Lipid Bilayer Models Mimicking the Outer Membrane of Gram-Negative Bacteria by an Active Plasticin. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[5]  Ò. Domènech,et al.  Critical Temperature of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Monolayers and Its Possible Biological Relevance. , 2017, The journal of physical chemistry. B.

[6]  Syma Khalid,et al.  OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment. , 2016, Structure.

[7]  J. Gumbart,et al.  Role of the Native Outer-Membrane Environment on the Transporter BtuB. , 2016, Biophysical journal.

[8]  F. Bai,et al.  Dynamics of Escherichia coli’s passive response to a sudden decrease in external osmolarity , 2016, Proceedings of the National Academy of Sciences.

[9]  A. Solovyova,et al.  Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis , 2016, Proceedings of the National Academy of Sciences.

[10]  R. Pastor,et al.  Mechanical properties of lipid bilayers from molecular dynamics simulation. , 2015, Chemistry and physics of lipids.

[11]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[12]  K. Brandenburg,et al.  Bacterial lipopolysaccharides form physically cross-linked, two-dimensional gels in the presence of divalent cations. , 2015, Soft matter.

[13]  Mark S.P. Sansom,et al.  Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria , 2015, Nature.

[14]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[15]  D. Tieleman,et al.  Microsecond Molecular Dynamics Simulations of Lipid Mixing , 2014, Langmuir : the ACS journal of surfaces and colloids.

[16]  Edward J. O'Brien,et al.  Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale , 2014, BMC Systems Biology.

[17]  J. Theriot,et al.  Response of Escherichia coli growth rate to osmotic shock , 2014, Proceedings of the National Academy of Sciences.

[18]  M. Karttunen,et al.  Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties. , 2014, Biochimica et biophysica acta.

[19]  Grant J. Jensen,et al.  Escherichia coli Peptidoglycan Structure and Mechanics as Predicted by Atomic-Scale Simulations , 2014, PLoS Comput. Biol..

[20]  G. Jensen,et al.  Peptidoglycan transformations during Bacillus subtilis sporulation , 2013, Molecular microbiology.

[21]  Benoît Roux,et al.  Architecture and assembly of the Gram‐positive cell wall , 2013, Molecular microbiology.

[22]  B. Lin,et al.  Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli , 2013, Biomacromolecules.

[23]  Alexander D. MacKerell,et al.  Inclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of α-helix and β-hairpin formation. , 2012, Biophysical journal.

[24]  A Srinivas Reddy,et al.  Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. , 2012, Biochimica et biophysica acta.

[25]  Ajay Gopinathan,et al.  Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity , 2012, Molecular microbiology.

[26]  Jeffery B. Klauda,et al.  Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. , 2012, Biochimica et biophysica acta.

[27]  J. Shaevitz,et al.  Fast, Multiphase Volume Adaptation to Hyperosmotic Shock by Escherichia coli , 2012, PloS one.

[28]  T. Piggot,et al.  Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes. , 2011, The journal of physical chemistry. B.

[29]  N. Wingreen,et al.  Mechanisms for maintaining cell shape in rod‐shaped Gram‐negative bacteria , 2011, Molecular microbiology.

[30]  N. Wingreen,et al.  Mechanics of membrane bulging during cell-wall disruption in gram-negative bacteria. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Klaus Schulten,et al.  Cryo–EM structure of the ribosome–SecYE complex in the membrane environment , 2011, Nature Structural &Molecular Biology.

[32]  J. Shaevitz,et al.  Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. , 2011, Physical review letters.

[33]  Rob Phillips,et al.  Entropic Tension in Crowded Membranes , 2011, PLoS Comput. Biol..

[34]  Rama R. Gullapalli,et al.  Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension. , 2011, Physical chemistry chemical physics : PCCP.

[35]  M. Record,et al.  Protein diffusion in the periplasm of E. coli under osmotic stress. , 2011, Biophysical journal.

[36]  Sean X. Sun,et al.  Morphology, growth, and size limit of bacterial cells. , 2010, Physical review letters.

[37]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[38]  B. Quinn,et al.  Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence X-ray fluorescence , 2010, Proceedings of the National Academy of Sciences.

[39]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[40]  K. Shull,et al.  Strain stiffening in synthetic and biopolymer networks. , 2010, Biomacromolecules.

[41]  B. West,et al.  Coarse-grained simulations of membranes under tension. , 2010, The Journal of chemical physics.

[42]  C. Rinaldi,et al.  Molecular dynamics simulations of rupture in lipid bilayers , 2010, Experimental biology and medicine.

[43]  Waldemar Vollmer,et al.  Architecture of peptidoglycan: more data and more models. , 2010, Trends in microbiology.

[44]  Grant J. Jensen,et al.  Molecular organization of Gram-negative peptidoglycan , 2008, Proceedings of the National Academy of Sciences.

[45]  T. Beveridge,et al.  Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface. , 2008, Biomacromolecules.

[46]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[47]  D. Engelman,et al.  Protein area occupancy at the center of the red blood cell membrane , 2008, Proceedings of the National Academy of Sciences.

[48]  Siewert J Marrink,et al.  Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[49]  Suliana Manley,et al.  Optical measurement of cell membrane tension. , 2006, Physical review letters.

[50]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[51]  D. Block,et al.  Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol. , 2005, Biophysical journal.

[52]  Zemer Gitai,et al.  MreB Actin-Mediated Segregation of a Specific Region of a Bacterial Chromosome , 2005, Cell.

[53]  T. Róg,et al.  Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. , 2005, Biophysical journal.

[54]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[55]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[56]  Siewert J Marrink,et al.  Molecular dynamics simulations of hydrophilic pores in lipid bilayers. , 2004, Biophysical journal.

[57]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[58]  J. Dubochet,et al.  Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[59]  Alan E Mark,et al.  Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. , 2003, Journal of the American Chemical Society.

[60]  Manfred H. Jericho,et al.  Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria , 2002 .

[61]  R. Lloubès,et al.  Pal Lipoprotein of Escherichia coli Plays a Major Role in Outer Membrane Integrity , 2002, Journal of bacteriology.

[62]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[63]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[64]  E. Lindahl,et al.  Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations , 2000 .

[65]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[66]  M. Radmacher,et al.  Bacterial turgor pressure can be measured by atomic force microscopy. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  E. Evans,et al.  Water permeability and mechanical strength of polyunsaturated lipid bilayers. , 2000, Biophysical journal.

[68]  Min Lu,et al.  Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 A resolution. , 2000, Journal of molecular biology.

[69]  M. Record,et al.  Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. , 2000, Biophysical journal.

[70]  D. Pink,et al.  Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy , 1999, Journal of bacteriology.

[71]  Richard W. Pastor,et al.  Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities , 1999 .

[72]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[73]  D. Marsh Lateral pressure in membranes. , 1996, Biochimica et biophysica acta.

[74]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[75]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[76]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[77]  A. L. Koch,et al.  Elasticity of the sacculus of Escherichia coli , 1992, Journal of bacteriology.

[78]  S. Zimmerman,et al.  Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. , 1991, Journal of molecular biology.

[79]  D Needham,et al.  Elastic deformation and failure of lipid bilayer membranes containing cholesterol. , 1990, Biophysical journal.

[80]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[81]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[82]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[83]  Y. Hirota,et al.  Murein-lipoprotein of Escherichia coli: A protein involved in the stabilization of bacterial cell envelope , 1978, Molecular and General Genetics MGG.

[84]  U. Henning,et al.  Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins , 1978, Journal of bacteriology.

[85]  V. Braun,et al.  Covalent lipoprotein from the outer membrane of Escherichia coli. , 1975, Biochimica et biophysica acta.

[86]  C. Whitfield,et al.  Lipopolysaccharide endotoxins. , 2002, Annual review of biochemistry.

[87]  A. L. Koch The biophysics of the gram-negative periplasmic space. , 1998, Critical reviews in microbiology.