A Formal Approach to Open Multiparty Interactions
暂无分享,去创建一个
Roberto Bruni | Chiara Bodei | Linda Brodo | R. Bruni | C. Bodei | L. Brodo
[1] Roberto Bruni,et al. Open Multiparty Interaction , 2012, WADT.
[2] Rocco De Nicola,et al. Basic observables for a calculus for global computing , 2007, Inf. Comput..
[3] Cédric Fournet,et al. The reflexive CHAM and the join-calculus , 1996, POPL '96.
[4] Cosimo Laneve,et al. The Expressive Power of Synchronizations , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.
[5] Matthew Hennessy,et al. A Theory of System Behaviour in the Presence of Node and Link Failures , 2005, CONCUR.
[6] Sergio Maffeis,et al. On the Expressive Power of Polyadic Synchronisation in pi-calculus , 2002, EXPRESS.
[7] Antonio Bernini,et al. A static analysis for Brane Calculi providing global occurrence counting information , 2017, Theor. Comput. Sci..
[8] Andrea Bracciali,et al. On deducing causality in metabolic networks , 2008, BMC Bioinformatics.
[9] C. A. R. Hoare,et al. Communicating sequential processes , 1978, CACM.
[10] Paolo Milazzo,et al. Investigating dynamic causalities in reaction systems , 2016, Theor. Comput. Sci..
[11] Matthew Hennessy. A calculus for costed computations , 2011, Log. Methods Comput. Sci..
[12] Luca Cardelli,et al. Brane Calculi , 2004, CMSB.
[13] Linda Brodo. On the Expressiveness of the pi-Calculus and the Mobile Ambients , 2010, AMAST.
[14] Roberto Bruni,et al. Parametric synchronizations in mobile nominal calculi , 2008, Theor. Comput. Sci..
[15] Francesca Levi,et al. Causal static analysis for Brane Calculi , 2015, Theor. Comput. Sci..
[16] Uwe Nestmann. On the Expressive Power of Joint Input , 1998, EXPRESS.
[17] Paolo Milazzo,et al. Multiset Patterns and Their Application to Dynamic Causalities in Membrane Systems , 2017, Int. Conf. on Membrane Computing.
[18] Robin Milner,et al. Communication and concurrency , 1989, PHI Series in computer science.
[19] Ugo Montanari,et al. Network Conscious pi-calculus , 2012 .
[20] Luca Cardelli,et al. Equational properties of mobile ambients , 1999, Mathematical Structures in Computer Science.
[21] Roberto Gorrieri,et al. An Operational Petri Net Semantics for A2CCS , 2011, Fundam. Informaticae.
[22] Roberto Bruni,et al. A Flat Process Calculus for Nested Membrane Interactions , 2014, Sci. Ann. Comput. Sci..
[23] Francesca Levi,et al. A Global Occurrence Counting Analysis for Brane Calculi , 2015, LOPSTR.
[24] Francesca Levi,et al. An Analysis for Causal Properties of Membrane Interactions , 2013, Electron. Notes Theor. Comput. Sci..
[25] Flemming Nielson,et al. Context Dependent Analysis of BioAmbients , 2006, Simulation and Verification of Dynamic Systems.
[26] Carlos Olarte,et al. Symbolic Semantics for Multiparty Interactions in the Link-Calculus , 2017, SOFSEM.
[27] Robin Milner,et al. Communicating and mobile systems - the Pi-calculus , 1999 .
[28] Paolo Milazzo,et al. Generalized contexts for reaction systems: definition and study of dynamic causalities , 2017, Acta Informatica.
[29] Luca Cardelli,et al. BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..
[30] Fernando M. V. Ramos,et al. Software-Defined Networking: A Comprehensive Survey , 2014, Proceedings of the IEEE.
[31] Ivan Lanese,et al. Foundations of Session Types and Behavioural Contracts , 2016, ACM Comput. Surv..
[32] Corrado Priami,et al. Names of the -calculus agents handled locally , 2001, Theor. Comput. Sci..
[33] Linda Brodo. On the expressiveness of π-calculus for encoding mobile ambients , 2018, Math. Struct. Comput. Sci..
[34] Glynn Winskel,et al. Synchronization Trees , 1984, Theor. Comput. Sci..