Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi
暂无分享,去创建一个
[1] Fairouz Kamareddine,et al. The Connuence of the S E -calculus via a Generalized Interpretation Method , 1996 .
[2] D. Knuth,et al. Simple Word Problems in Universal Algebras , 1983 .
[3] César Augusto Munoz Hurtado. Confluence and Preservation of Strong Normalisation in an Explicit Substitutions Calculus , 1995 .
[4] Kristoffer Hogsbro Rose,et al. Operational reduction models for functional programming languages , 1996, Technical report / University of Copenhagen / Datalogisk institut.
[5] Fairouz Kamareddine,et al. A useful ?-notation , 1996 .
[6] Fairouz Kamareddine,et al. Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..
[7] HuetGérard. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980 .
[8] C. J. Bloo,et al. Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .
[9] Pierre Lescanne,et al. Explicit Substitutions with de Bruijn's Levels , 1995, RTA.
[10] Herman Geuvers,et al. Explicit substitution : on the edge of strong normalisation , 1996 .
[11] Cj Roel Bloo,et al. Preservation of strong normalisation for explicit substitution , 1995 .
[12] Kristoffer Høgsbro Rose,et al. Explicit Cyclic Substitutions , 1992, CTRS.
[13] César A. Muñoz,et al. Confluence and preservation of strong normalisation in an explicit substitutions calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[14] de Ng Dick Bruijn,et al. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[15] Fairouz Kamareddine,et al. The S-calculus: Its Typed and Its Extended Versions , 1995 .
[16] Alejandro Ríos,et al. A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.
[17] Delia Kesner,et al. -calculi with Explicit Substitutions and Weak Composition Which Preserve -strong Normalization , 1996 .
[18] Fairouz Kamareddine,et al. On Stepwise Explicit Substitution , 1993, Int. J. Found. Comput. Sci..
[19] Gerard Huet,et al. Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[20] Fairouz Kamareddine,et al. A -calculus a La De Bruijn with Explicit Substitutions 7th International Conference on Programming Languages: Implementations, Logics and Programs, Plilp95, Lncs 982, Pages 45-62 , 1995 .
[21] de Ng Dick Bruijn. A namefree lambda calculus with facilities for internal definition of expressions and segments , 1978 .
[22] KamareddineFairouz,et al. Extending a -calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms , 1997 .
[23] Paul-Andr. Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .
[24] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.
[25] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[26] Pierre Lescanne,et al. λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.
[27] Thérèse Hardin,et al. Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..
[28] Jean-Jacques Lévy,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.
[29] Cj Roel Bloo,et al. Preservation of termination for explicit substitution , 1997 .
[30] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[31] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.
[32] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .