Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  I. Nardecchia,et al.  The Hunt for Environmental Noise in Virgo during the Third Observing Run , 2020, Galaxies.

[3]  E. Majorana,et al.  A Seismological Study of the Sos Enattos Area—the Sardinia Candidate Site for the Einstein Telescope , 2020 .

[4]  P. K. Panda,et al.  Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521 , 2020, 2009.01190.

[5]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[6]  Fabio Bonsignorio,et al.  Site-selection criteria for the Einstein Telescope. , 2020, The Review of scientific instruments.

[7]  E. Majorana,et al.  Characterization of the Sos Enattos site for the Einstein Telescope , 2020, Journal of Physics: Conference Series.

[8]  J. Harms Terrestrial gravity fluctuations , 2019, Living Reviews in Relativity.

[9]  Jonathan W. Arenberg,et al.  CubeSat Astronomical Telescops and Research in the 2020s , 2019 .

[10]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[11]  F Badaracco,et al.  Optimization of seismometer arrays for the cancellation of Newtonian noise from seismic body waves , 2019, Classical and Quantum Gravity.

[12]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[13]  Anonymous,et al.  Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]. , 2018, Physical review letters.

[14]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[15]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[16]  M. Mezcua,et al.  Observational evidence for intermediate-mass black holes , 2017, 1705.09667.

[17]  David Blair,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, Classical and quantum gravity.

[18]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[19]  The LIGO Scientific Collaboration,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, 1602.03844.

[20]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[21]  Jan Harms,et al.  Terrestrial Gravity Fluctuations , 2015, Living reviews in relativity.

[22]  Gerardo Giordano,et al.  Microseismic studies of an underground site for a new interferometric gravitational wave detector , 2014 .

[23]  H. Lück,et al.  A Third Generation Gravitational Wave Observatory: The Einstein Telescope , 2014 .

[24]  B. Sathyaprakash Corrigendum: Scientific objectives of Einstein telescope , 2013 .

[25]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[26]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[27]  Vincent Loriette,et al.  Noise from scattered light in Virgo's second science run data , 2010 .

[28]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[29]  M. Maggiore Gravitational Waves: Volume 1: Theory and Experiments , 2007 .