Analysing Nets by the Invariant Method

Methods for analysing P/T-systems can be roughly divided into several categories : study of the reachability set, transformation by homomorphism, and invariants. Each of these methods have advantages and disadvantages.

[1]  Serge Haddad,et al.  Algebraic structure of flows of a regular coloured net , 1986, European Workshop on Applications and Theory of Petri Nets.

[2]  Kurt Lautenbach,et al.  Use of Petri Nets for Proving Correctness of Concurrent Process Systems , 1974, IFIP Congress.

[3]  Jacques Vautherin,et al.  Computation of flows for unary-predicates/transition-nets , 1984, European Workshop on Applications and Theory in Petri Nets.

[4]  Alain Finkel,et al.  An Introduction to Fifo Nets-Monogeneous Nets: A Subclass of Fifo Nets , 1985, Theor. Comput. Sci..

[5]  Gérard Roucairol,et al.  Linear Algebra in Net Theory , 1979, Advanced Course: Net Theory and Applications.

[6]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[7]  Manuel Silva,et al.  A Simple and Fast Algorithm to Obtain All Invariants of a Generalized Petri Net , 1980, Selected Papers from the First and the Second European Workshop on Application and Theory of Petri Nets.

[8]  Jacques Vautherin Un modèle algébrique, basé sur les réseaux de Petri, pour l'étude des systèmes parallèles , 1985 .

[9]  Jacques Vautherin,et al.  Parallel systems specitications with coloured Petri nets and algebraic specifications , 1986, European Workshop on Applications and Theory of Petri Nets.

[10]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 1: Equations and Initial Semantics , 1985 .

[11]  Peter Huber,et al.  Towards reachability trees for high-level Petri nets , 1985, European Workshop on Applications and Theory in Petri Nets.

[12]  Narsingh Deo,et al.  On Algorithms for Enumerating All Circuits of a Graph , 1976, SIAM J. Comput..

[13]  Kurt Jensen,et al.  Coloured Petri Nets and the Invariant-Method , 1981, Theor. Comput. Sci..