Représentation des systèmes dynamiques substitutifs non unimodulaires

On montre que la condition combinatoire de fortes coïncidences est suffisante pour qu'un système substitutif de type Pisot soit isomorphe en mesure à un échange de morceaux dans un compact autosimilaire de mesure non nulle dans le produit d'un espace euclidien et d'extensions finies de corps p-adiques. En particulier, tout système substitutif de type Pisot est une extension finie de son facteur équicontinu maximal ; en règle générale, ce dernier contient une translation p-adique si et seulement si la matrice d'incidence de la substitution est nilpotente modulo p. The combinatorial condition of strong coincidence is proved to be a sufficient condition for the dynamical system associated with a non-unimodular substitution of Pisot type to be measure-theoretically isomorphic with an exchange of domain on a set called the Rauzy fractal of the substitution. The Rauzy fractal is a self-similar compact subset of the product of an Euclidean space with finite extensions of p-adic fields. As a consequence, every substitutive dynamical system of Pisot type is a finite extension of its maximal equicontinuous factor. We prove that this maximal factor contains a p-adic translation if and only if the incidence matrix of the substitution is nilpotent modulo p.

[1]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[2]  C. Mauduit,et al.  Substitution dynamical systems : Algebraic characterization of eigenvalues , 1996 .

[3]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[4]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[5]  A. Siegel,et al.  Pure discrete spectrum dynamical system and periodic tiling associated with a substitution , 2004 .

[6]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[7]  L. Zamboni,et al.  Directed Graphs and Substitutions , 2001, Theory of Computing Systems.

[8]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .

[9]  Boris Solomyak,et al.  On the spectral theory of adic transformations , 1992 .

[10]  Richard Kenyon The construction of self-similar tilings , 1995 .

[11]  Marcy Barge,et al.  Coincidence for substitutions of Pisot type , 2002 .

[12]  Yvette Amice,et al.  Les nombres p-adiques , 1975 .

[13]  John C. Martin,et al.  Minimal flows arising from substitutions of non-constant length , 1973, Mathematical systems theory.

[14]  Brigitte Mossé,et al.  Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..

[15]  Boris Solomyak,et al.  Two-symbol Pisot substitutions have pure discrete spectrum , 2003, Ergodic Theory and Dynamical Systems.

[16]  A. Siegel,et al.  Automate des pr'efixes-suffixes associ'e ` a une substitution primitive , 1999 .

[17]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[18]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[19]  Bernard Host,et al.  Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable , 1986, Ergodic Theory and Dynamical Systems.

[20]  A topological invariant of substitution minimal sets , 1972 .

[21]  イヴォン ブレース,et al.  Presses Universitaires de France刊行の近著解題 , 1952 .

[22]  G. Rauzy Nombres algébriques et substitutions , 1982 .