The solid–liquid interface energy of organic crystals

A simple thermodynamic model, originally developed for metals based on the Gibbs-Thomson equation and related considerations for homogeneous nucleation, has been extended to predict the solid-liquid interface energy gsl of organic crystals. The model predictions correspond to available experimental and other theoretical results for 38 organic crystals. Copyright # 2007 John Wiley & Sons, Ltd.

[1]  M. Erol,et al.  Measurement of solid–liquid interfacial energy for solid d-camphor solution in equilibrium with succinonitrile d-camphor eutectic liquid , 2006 .

[2]  Q. Jiang,et al.  Nucleus–liquid interfacial energy of elements , 2006 .

[3]  P. Ramasamy,et al.  Studies on growth, induction period, interfacial energy and metastable zonewidth of m‐nitroaniline , 2005 .

[4]  Q. Jiang,et al.  Melting volume change of different crystalline lattices , 2004 .

[5]  R. Rai Phase diagram, optical, nonlinear optical, and physicochemical studies of the organic monotectic system: Pentachloropyridine–succinonitrile , 2004 .

[6]  Mark Asta,et al.  Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe , 2004 .

[7]  N. Maraşlı,et al.  Solid–liquid interfacial energy of the eutectoid β phase in the Al–Zn eutectic system , 2004 .

[8]  Y. Iijima,et al.  Role of entropy of fusion in phase transformation and self-diffusion , 2004 .

[9]  A. Karma,et al.  Atomistic and continuum modeling of dendritic solidification , 2003 .

[10]  U. S. Rai,et al.  Solidification and thermal behaviour of binary organic eutectic and monotectic; succinonitrile pyrene system , 2003 .

[11]  B. Vinet,et al.  Correlations between surface and interface energies with respect to crystal nucleation. , 2002, Journal of colloid and interface science.

[12]  H. Jones,et al.  The solid–liquid interfacial energy of metals: calculations versus measurements , 2002 .

[13]  Q. Jiang,et al.  Size range of solid-liquid interface energy of organic crystals , 2002 .

[14]  U. S. Rai,et al.  Phase Diagram and Growth Behaviour of Durene–resorcinol System , 2002 .

[15]  U. S. Rai,et al.  Physical chemistry of binary organic eutectic and monotectic alloys; 1,2,4,5-tetrachlorobenzene–α-naphthol and TCB–resorcinol systems , 2002 .

[16]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[17]  K. Varma,et al.  Thermal and dielectric studies on binary organic system: benzil–m-nitroaniline , 2001 .

[18]  U. S. Rai,et al.  Physical chemistry of binary organic eutectic and monotectic alloys; durene–pyrogallol system , 2000 .

[19]  U. S. Rai,et al.  Solid–liquid equilibrium and thermochemical properties of organic eutectic in a monotectic system , 2000 .

[20]  K. Varma,et al.  Phase diagram and dielectric studies of binary organic materials , 2000 .

[21]  E. Çadırlı,et al.  Solid–liquid interfacial energy of camphene , 1999 .

[22]  Hang Shi,et al.  FREE ENERGY OF CRYSTAL-LIQUID INTERFACE , 1999 .

[23]  U. S. Rai,et al.  Some Physicochemical Studies on Organic Eutectics and Molecular Complex: Urea – p-nitrophenol System , 1999 .

[24]  E. Çadırlı,et al.  Solid-liquid surface energy of pivalic acid , 1998 .

[25]  U. S. Rai,et al.  Physical Chemistry of Organic Eutectics , 1998 .

[26]  U. S. Rai,et al.  Physical chemistry of the organic analog of metal–metal eutectic and monotectic alloys , 1998 .

[27]  U. S. Rai,et al.  Chemistry and characterization of binary organic eutectics and molecular complexes. The urea-m-nitrobenzoic acid system , 1998 .

[28]  U. S. Rai,et al.  SOME PHYSICOCHEMICAL STUDIES ON BINARY ORGANIC EUTECTICS , 1991 .

[29]  A. Ludwig,et al.  Solid-liquid interfacial free energy , 1991 .

[30]  László Gránásy,et al.  Crystal-Melt Interfacial Free Energy of Elements and Alloys , 1991 .

[31]  C. Jackson,et al.  The melting behavior of organic materials confined in porous solids , 1990 .

[32]  Adam S Skapski,et al.  Capillary Cone Method for Determination of Surface Tension of Solids , 1957 .

[33]  A. S. Skapski,et al.  Method for the Determination of the Surface Tension of Solids, from Their Melting Points in Thin Wedges , 1956 .

[34]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[35]  N. Maraşlı,et al.  Solid–liquid interface energies in the succinonitrile and succinonitrile–carbon tetrabromide eutectic system , 2003 .

[36]  U. S. Rai,et al.  Some Physicochemical Studies on Organic Analog of Metal‐Nonmetal Eutectics , 1997 .

[37]  U. S. Rai,et al.  Solidification behaviour of binary organic eutectic alloys , 1994 .

[38]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[39]  John Aurie Dean,et al.  Handbook of Organic Chemistry , 1987 .

[40]  J. Perepezko,et al.  Thermodynamic properties of undercooled liquid metals , 1984 .

[41]  D. R. H. Jones,et al.  The free energies of solid-liquid interfaces , 1974 .

[42]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[43]  Martin E. Glicksman,et al.  Determination of absolute solid-liquid interfacial free energies in metals , 1969 .