Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

Abstract Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenological and mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cu superalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (AerMet™100 and Ferrium™M54) stressed in 0.6 M NaCl solution over a range of applied potential. For Monel®K-500, KTH is accurately predicted versus cathodic potential using either classical or gradient-modified formulations; however, Stage II growth rate is best predicted by a SGP description of crack tip stress that justifies a critical distance of 1 μm. For steel, threshold and growth rate are best predicted using high-hydrostatic stress that exceeds 6 to 8 times alloy yield strength and extends 1 μm ahead of the crack tip. This stress is nearly achieved with a three-length phenomenological SGP formulation, but additional stress enhancement is needed, perhaps due to tip geometry or slip-microstructure.

[1]  F. Ford,et al.  Prediction of stress corrosion cracking (SCC) in nuclear power systems , 2011 .

[2]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[3]  R. Gangloff,et al.  Gaseous hydrogen embrittlement of materials in energy technologies Volume 2 , 2012 .

[4]  Young,et al.  Crack tip mechanics effects on environment‐assisted cracking of beta‐titanium alloys in aqueous NaCl , 2000 .

[5]  J. Scully,et al.  The Influence of Strain on Hydrogen Entry and Transport in a High Strength Steel in Sodium Chloride Solution , 1988 .

[6]  Richard P. Gangloff,et al.  Hydrogen Assisted Cracking of High Strength Alloys , 2003 .

[7]  P. Doig,et al.  A model for the initiation of hydrogen embrittlement cracking at notches in gaseous hydrogen environments , 1977 .

[8]  Zhi-Gang Yang,et al.  Austenite layer and precipitation in high Co-Ni maraging steel. , 2014, Micron.

[9]  Brian P. Somerday,et al.  A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel , 2010 .

[10]  M. Dadfarnia,et al.  On Modeling Hydrogen-Induced Crack Propagation Under Sustained Load , 2014 .

[11]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[12]  R. Wei Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry , 2010 .

[13]  Richard Chait,et al.  Factors influencing the strength differential of high strength steels , 1972 .

[14]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[15]  Robert M. McMeeking,et al.  Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture , 1977 .

[16]  Greg Welsh,et al.  A structural integrity prognosis system , 2009 .

[17]  J. Chêne Stress corrosion cracking and hydrogen embrittlement , 2016 .

[18]  Lorenzo Bardella,et al.  Modelling the torsion of thin metal wires by distortion gradient plasticity , 2015 .

[19]  X. Qian,et al.  Temperature dependence of material length scale for strain gradient plasticity and its effect on near‐tip opening displacement , 2014 .

[20]  C. F. Niordson,et al.  On fracture in finite strain gradient plasticity , 2016, 1711.01081.

[21]  P. Thomason,et al.  Ductile Fracture of Metals , 1990 .

[22]  R. Gangloff Probabilistic Fracture Mechanics Simulation of Stress Corrosion Cracking Using Accelerated Laboratory Testing and Multi-Scale Modeling , 2016 .

[23]  J. Scully,et al.  Hydrogen diffusion and trapping in a precipitation-hardened nickel–copper–aluminum alloy Monel K-500 (UNS N05500) , 2013 .

[24]  W. Gerberich,et al.  Quasi-equilibrium modeling of the toughness transition during semibrittle cleavage , 1994 .

[25]  M. Robinson,et al.  Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels , 2010 .

[26]  S. Kitaoka,et al.  Distribution of dislocations at a mode I crack tip and their shielding effect , 2000 .

[27]  A. Turnbull Hydrogen diffusion and trapping in metals , 2012 .

[28]  W. Gerberich Modeling hydrogen induced damage mechanisms in metals , 2012 .

[29]  Brian P. Somerday,et al.  Recent advances on hydrogen embrittlement of structural materials , 2015, International Journal of Fracture.

[30]  S. Lynch Mechanistic and fractographic aspects of stress corrosion cracking , 2011 .

[31]  T. Baker,et al.  The threshold stress intensity for hydrogen-induced crack growth , 1981 .

[32]  P. Mukhopadhyay,et al.  Precipitation in the NiCu-base alloy monel K-500 , 1986 .

[33]  S. Agnew,et al.  Effect of aging on scale-dependent plasticity in aluminum alloy 2024 , 2006 .

[34]  Shuai Wang,et al.  Hydrogen Embrittlement Understood , 2015, Metallurgical and Materials Transactions A.

[35]  Huajian Gao,et al.  Fracture toughness of layered structures: Embrittlement due to confinement of plasticity , 2008 .

[36]  R. M. Cannon,et al.  Fracture properties of interfacially doped Nb-A12O3 bicrystals: I, fracture characteristics , 2002 .

[37]  R. A. Oriani Whitney Award Lecture—1987: Hydrogen—The Versatile Embrittler , 1987 .

[38]  John W. Hutchinson,et al.  The mechanics of size-dependent indentation , 1998 .

[39]  K. Tsuzaki,et al.  Studies of Evaluation of Hydrogen Embrittlement Property of High-Strength Steels with Consideration of the Effect of Atmospheric Corrosion , 2013, Metallurgical and Materials Transactions A.

[40]  R. A. Oriani,et al.  HYDROGEN - THE VERSATILE EMBRITTLER , 1987 .

[41]  A. Bakker,et al.  Hydrogen transport near a blunting crack tip , 1999 .

[42]  J. Scully,et al.  Predicting the Effect of Applied Potential on Crack Tip Hydrogen Concentration in Low-Alloy Martensitic Steels , 2008 .

[43]  B. Johansson,et al.  Surface parameters of ferritic iron-rich Fe–Cr alloy , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  Michael Lane,et al.  Adhesion and debonding of multi-layer thin film structures , 1998 .

[45]  J. Bockris Hydrogen , 2011, Materials.

[46]  Tong-Yi Zhang,et al.  The equilibrium concentration of hydrogen atoms ahead of a mixed mode I-Mode III crack tip in single crystal iron , 1999 .

[47]  J. Scully,et al.  Measurement and Modeling of Hydrogen Environment-Assisted Cracking in Monel K-500 , 2014, Metallurgical and Materials Transactions A.

[48]  R. M. Cannon,et al.  Fracture properties of interfacially doped Nb-Al2O3 bicrystals: II, relation of interfacial bonding, chemistry and local plasticity , 2002 .

[49]  J. Achenbach,et al.  A comprehensive analysis of the growth rate of stress corrosion cracks , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  T. Siegmund,et al.  Computations of fatigue crack growth with strain gradient plasticity and an irreversible cohesive zone model , 2008 .

[51]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[52]  Michael P. Enright,et al.  Integration of Manufacturing Process Simulation with Probabilistic Damage Tolerance Analysis of Aircraft Engine Components , 2012 .

[53]  W. C. Johnson,et al.  Thermodynamics of stress-induced interstitial redistribution in body-centered cubic metals , 2003 .

[54]  M. Ortiza,et al.  A quantum-mechanically informed continuum model of hydrogen embrittlement , 2004 .

[55]  R. A. Oriani,et al.  The necessity of both plasticity and brittleness in the fracture thresholds of iron , 1991 .

[56]  S. Wadekar,et al.  Precipitation hardening in nickel-copper base alloy monel K 500 , 1993, Metallurgical and Materials Transactions A.

[57]  S. M. Ohr,et al.  Dislocation-crack interaction , 1987 .

[58]  W. Garrison,et al.  A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels , 1992 .

[59]  P. Sofronis,et al.  A micromechanics approach to the study of hydrogen transport and embrittlement , 2001 .

[60]  Richard P. Gangloff,et al.  Measurement and Modeling of Hydrogen Environment–Assisted Cracking of Ultra-High-Strength Steel , 2007 .

[61]  J. Begley,et al.  Continuum mechanics modeling of hydrogen embrittlement , 2012 .

[62]  C. F. Niordson,et al.  Strain gradient plasticity modeling of hydrogen diffusion to the crack tip , 2016, 1711.05616.

[63]  J. Scully,et al.  Hydrogen trap states in ultrahigh-strength AERMET 100 steel , 2004 .

[64]  Anthony G. Evans,et al.  A statistical model of brittle fracture by transgranular cleavage , 1986 .

[65]  N. A. Flecka,et al.  A reformulation of strain gradient plasticity , 2001 .

[66]  J. Scully,et al.  Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel , 2003 .

[67]  S. Agnew,et al.  The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity , 2008 .

[68]  C. F. Niordson,et al.  A finite element framework for distortion gradient plasticity with applications to bending of thin foils , 2016, 1711.05602.

[69]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[70]  E. Mart'inez-Paneda,et al.  Modeling damage and fracture within strain-gradient plasticity , 2015, 1710.05374.

[71]  R. Ayer,et al.  Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100 , 1993, Metallurgical and Materials Transactions A.

[72]  M. Zikry,et al.  Prediction of diffusion assisted hydrogen embrittlement failure in high strength martensitic steels , 2015 .

[73]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[74]  Jesús Toribio,et al.  A generalised model of hydrogen diffusion in metals with multiple trap types , 2015 .

[75]  Justin D. Dolph,et al.  Measurement and Modeling of Hydrogen Environment-Assisted Cracking in a Ni-Cu-Al-Ti Superalloy , 2016, Metallurgical and Materials Transactions A.

[76]  Huajian Gao,et al.  A conventional theory of mechanism-based strain gradient plasticity , 2004 .

[77]  Kohsaku Ushioda,et al.  Comparison of the Dislocation Density in Martensitic Steels Evaluated by Some X-ray Diffraction Methods , 2010 .