PRIN: a predicted rice interactome network

BackgroundProtein-protein interactions play a fundamental role in elucidating the molecular mechanisms of biomolecular function, signal transductions and metabolic pathways of living organisms. Although high-throughput technologies such as yeast two-hybrid system and affinity purification followed by mass spectrometry are widely used in model organisms, the progress of protein-protein interactions detection in plants is rather slow. With this motivation, our work presents a computational approach to predict protein-protein interactions in Oryza sativa.ResultsTo better understand the interactions of proteins in Oryza sativa, we have developed PRIN, a Predicted Rice Interactome Network. Protein-protein interaction data of PRIN are based on the interologs of six model organisms where large-scale protein-protein interaction experiments have been applied: yeast (Saccharomyces cerevisiae), worm (Caenorhabditis elegans), fruit fly (Drosophila melanogaster), human (Homo sapiens), Escherichia coli K12 and Arabidopsis thaliana. With certain quality controls, altogether we obtained 76,585 non-redundant rice protein interaction pairs among 5,049 rice proteins. Further analysis showed that the topology properties of predicted rice protein interaction network are more similar to yeast than to the other 5 organisms. This may not be surprising as the interologs based on yeast contribute nearly 74% of total interactions. In addition, GO annotation, subcellular localization information and gene expression data are also mapped to our network for validation. Finally, a user-friendly web interface was developed to offer convenient database search and network visualization.ConclusionsPRIN is the first well annotated protein interaction database for the important model plant Oryza sativa. It has greatly extended the current available protein-protein interaction data of rice with a computational approach, which will certainly provide further insights into rice functional genomics and systems biology.PRIN is available online at http://bis.zju.edu.cn/prin/.

[1]  Igor Jurisica,et al.  Online Predicted Human Interaction Database , 2005, Bioinform..

[2]  Sebastian Proost,et al.  Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression , 2009, BMC Genomics.

[3]  Marcelo M. Brandão,et al.  AtPIN: Arabidopsis thaliana Protein Interaction Network , 2009, BMC Bioinformatics.

[4]  Subhajyoti De,et al.  Genomic neighbourhood and the regulation of gene expression. , 2010, Current opinion in cell biology.

[5]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[6]  Krzysztof Ginalski,et al.  The interactome: predicting the protein-protein interactions in cells. , 2009, Cellular & molecular biology letters.

[7]  I. Jurisica,et al.  Unequal evolutionary conservation of human protein interactions in interologous networks , 2007, Genome Biology.

[8]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[9]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[10]  Sebastian Y Bednarek,et al.  Membrane trafficking in plants: new discoveries and approaches. , 2004, Current opinion in plant biology.

[11]  Joshua S Yuan,et al.  Plant Protein-Protein Interaction Network and Interactome , 2010, Current genomics.

[12]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[13]  Guang Li,et al.  AtPID: Arabidopsis thaliana protein interactome database—an integrative platform for plant systems biology , 2007, Nucleic Acids Res..

[14]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[15]  Wen Zheng,et al.  PlaPID: A Database of Protein-Protein Interactions in Plants , 2010, 2010 4th International Conference on Bioinformatics and Biomedical Engineering.

[16]  Erik L. L. Sonnhammer,et al.  InParanoid 6: eukaryotic ortholog clusters with inparalogs , 2007, Nucleic Acids Res..

[17]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..

[18]  Ram Samudrala,et al.  Prediction and integration of regulatory and protein-protein interactions. , 2009, Methods in molecular biology.

[19]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[20]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[21]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[22]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[23]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[24]  A. Harvey Millar,et al.  A Predicted Interactome for Arabidopsis1[C][W][OA] , 2007, Plant Physiology.

[25]  Lei Zhu,et al.  SPIDer: Saccharomyces protein-protein interaction database , 2006, BMC Bioinformatics.

[26]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[27]  R. Tsien,et al.  Specificity and Stability in Topology of Protein Networks , 2022 .

[28]  Gisbert Schneider,et al.  Support vector machine applications in bioinformatics. , 2003, Applied bioinformatics.

[29]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[30]  Birgit Eisenhaber,et al.  Databases of protein-protein interactions and complexes. , 2010, Methods in molecular biology.

[31]  Alex W. Wilkinson,et al.  Computational prediction of protein-protein interactions , 2012 .

[32]  Kuo-Chen Chou,et al.  Large‐scale plant protein subcellular location prediction , 2007, Journal of cellular biochemistry.

[33]  Jong Bhak,et al.  SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803 , 2007, BMC Bioinformatics.

[34]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[35]  Patrick S. Schnable,et al.  Refinement of Light-Responsive Transcript Lists Using Rice Oligonucleotide Arrays: Evaluation of Gene-Redundancy , 2008, PloS one.

[36]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[37]  Peng Li,et al.  AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis , 2010, Nucleic Acids Res..

[38]  Nan Wang,et al.  AgBase: a functional genomics resource for agriculture , 2006, BMC Genomics.

[39]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[40]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[41]  Junichi Tsujii,et al.  Event extraction for systems biology by text mining the literature. , 2010, Trends in biotechnology.

[42]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[44]  Mingzhi Lin,et al.  Computational Identification of Potential Molecular Interactions in Arabidopsis1[C][W] , 2009, Plant Physiology.

[45]  Randall C Willis,et al.  Searching, viewing, and visualizing data in the Biomolecular Interaction Network Database (BIND). , 2006, Current protocols in bioinformatics.

[46]  Eunseog Youn,et al.  Connecting protein interaction data, mutations, and disease using bioinformatics. , 2009, Methods in molecular biology.

[47]  Kimberly Van Auken,et al.  WormBase: a multi-species resource for nematode biology and genomics , 2004, Nucleic Acids Res..

[48]  Concettina Guerra,et al.  Computational Methods for the Prediction of Protein-Protein Interactions , 2011, IWCIA.

[49]  Haruki Nakamura,et al.  Filtering high-throughput protein-protein interaction data using a combination of genomic features , 2005, BMC Bioinformatics.

[50]  Jungwon Yoon,et al.  The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community , 2003, Nucleic Acids Res..

[51]  Rachael P. Huntley,et al.  QuickGO: a web-based tool for Gene Ontology searching , 2009, Bioinform..

[52]  Ziding Zhang,et al.  The prediction of protein-protein interaction networks in rice blast fungus , 2008, BMC Genomics.

[53]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[54]  Qiong Gao,et al.  Resources for integrative systems biology: from data through databases to networks and dynamic system models , 2006, Briefings Bioinform..

[55]  Xin Chen,et al.  PAIR: the predicted Arabidopsis interactome resource , 2010, Nucleic Acids Res..

[56]  Ying Xu,et al.  Prediction of functional modules based on comparative genome analysis and Gene Ontology application , 2005, Nucleic acids research.

[57]  M. Vidal,et al.  Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". , 2001, Genome research.

[58]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[59]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[60]  Cheng-Yan Kao,et al.  Reconstruction of human protein interolog network using evolutionary conserved network , 2007, BMC Bioinformatics.

[61]  Xiaomei Wu,et al.  Prediction of yeast protein–protein interaction network: insights from the Gene Ontology and annotations , 2006, Nucleic acids research.

[62]  Hans-Werner Mewes,et al.  MPact: the MIPS protein interaction resource on yeast , 2005, Nucleic Acids Res..

[63]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[64]  Weiwei Zhong,et al.  Genome-Wide Prediction of C. elegans Genetic Interactions , 2006, Science.

[65]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[66]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[67]  A. Valencia,et al.  Computational methods for the prediction of protein interactions. , 2002, Current opinion in structural biology.

[68]  Fidel Ramírez,et al.  Computing topological parameters of biological networks , 2008, Bioinform..

[69]  Edward S. Buckler,et al.  Gramene database in 2010: updates and extensions , 2010, Nucleic Acids Res..

[70]  BMC Bioinformatics , 2005 .

[71]  Gajendra P.S. Raghava,et al.  RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information , 2009, Proteomics.

[72]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..