Construction of spherical t-designs

Spherical t-designs are Chebyshev-type averaging sets on the d-dimensional unit sphere Sd−1, that are exact for polynomials of degree at most t. The concept of such designs was introduced by Delsarte, Goethals and Seidel in 1977. The existence of spherical t-designs for every t and d was proved by Seymour and Zaslavsky in 1984. Although some sporadic examples are known, no general construction has been given. In this paper we give an explicit construction of spherical t-designs on Sd−1 containing N points, for every t,d and N,N≥N0, where N0 = C(d)tO(d3).