Graph embedding based multi-label Zero-shot Learning.

[1]  Shuangwei Liu,et al.  Task Guided Compositional Representation Learning for ZDA , 2021, ArXiv.

[2]  Xiaobo Shen,et al.  Compact network embedding for fast node classification , 2022, Pattern Recognit..

[3]  Quanxue Gao,et al.  Attributes learning network for generalized zero-shot learning , 2022, Neural Networks.

[4]  Ling Shao,et al.  HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning , 2021, NeurIPS.

[5]  Ling Shao,et al.  Discriminative Region-based Multi-Label Zero-Shot Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Sheng-Jun Huang,et al.  Visual-guided attentive attributes embedding for zero-shot learning , 2021, Neural Networks.

[7]  Yaowei Wang,et al.  Conformer: Local Features Coupling Global Representations for Visual Recognition , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Heng Tao Shen,et al.  Investigating the Bilateral Connections in Generative Zero-Shot Learning , 2021, IEEE Transactions on Cybernetics.

[9]  Ruihong Qiu,et al.  Semantics Disentangling for Generalized Zero-Shot Learning , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[10]  Jinan Gu,et al.  Research progress of zero-shot learning , 2020, Applied Intelligence.

[11]  Xiangliang Zhang,et al.  Multi-label zero-shot learning with graph convolutional networks , 2020, Neural Networks.

[12]  Dat T. Huynh,et al.  A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Lu Liu,et al.  Attribute Propagation Network for Graph Zero-Shot Learning , 2020, AAAI.

[14]  Hema A. Murthy,et al.  Stacked Adversarial Network for Zero-Shot Sketch based Image Retrieval , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[15]  Chunyun Zhang,et al.  Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs , 2020, AAAI.

[16]  Jinwen Ma,et al.  Multi-Label Classification with Label Graph Superimposing , 2019, AAAI.

[17]  Piyush Rai,et al.  A Generative Framework for Zero-Shot Learning with Adversarial Domain Adaptation , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[18]  Xiu-Shen Wei,et al.  Multi-Label Image Recognition With Graph Convolutional Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Chunyan Miao,et al.  A Survey of Zero-Shot Learning , 2019, ACM Trans. Intell. Syst. Technol..

[20]  Jordi Pont-Tuset,et al.  The Open Images Dataset V4 , 2018, International Journal of Computer Vision.

[21]  Yuhong Guo,et al.  Multi-Label Zero-Shot Learning With Transfer-Aware Label Embedding Projection , 2018, 2019 IEEE International Conference on Image Processing (ICIP).

[22]  Hao Wang,et al.  Rethinking Knowledge Graph Propagation for Zero-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Byoung-Tak Zhang,et al.  Bilinear Attention Networks , 2018, NeurIPS.

[24]  Abhinav Gupta,et al.  Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25]  Yizhou Yu,et al.  Multi-evidence Filtering and Fusion for Multi-label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Yu-Chiang Frank Wang,et al.  Multi-label Zero-Shot Learning with Structured Knowledge Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Vincent Dumoulin,et al.  Generative Adversarial Networks: An Overview , 2017, 1710.07035.

[28]  Liang Lin,et al.  Multi-label Image Recognition by Recurrently Discovering Attentional Regions , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[29]  Christoph H. Lampert,et al.  Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[31]  Yannis Papanikolaou,et al.  Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models , 2017, Journal of Biomedical Semantics.

[32]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.

[33]  Mubarak Shah,et al.  Fast Zero-Shot Image Tagging , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Wei Xu,et al.  CNN-RNN: A Unified Framework for Multi-label Image Classification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Anton van den Hengel,et al.  Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Cordelia Schmid,et al.  Label-Embedding for Image Classification , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[39]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[40]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[41]  Alberto Ferreira de Souza,et al.  Automated multi-label text categorization with VG-RAM weightless neural networks , 2009, Neurocomputing.

[42]  Geoff Holmes,et al.  Multi-label Classification Using Ensembles of Pruned Sets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[43]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[44]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[45]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[46]  Min-Ling Zhang,et al.  Multi-Label Neural Networks with Applications to Functional Genomics and Text Categorization , 2006, IEEE Trans. Knowl. Data Eng..