Molecular dynamics study of interfacial properties in CO 2 enhanced oil recovery

[1]  Ioannis G. Economou,et al.  Molecular dynamics simulation of n-alkanes and CO2 confined by calcite nanopores , 2018 .

[2]  R. Okuno,et al.  Phase behavior of N2/n-C4H10 in a partially confined space derived from shale sample , 2018 .

[3]  James A. Sorensen,et al.  Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales , 2017 .

[4]  Jun Zhang,et al.  CO2 activating hydrocarbon transport across nanopore throat: insights from molecular dynamics simulation. , 2017, Physical chemistry chemical physics : PCCP.

[5]  Zhiliang Zhang,et al.  Displacement Mechanism of Oil in Shale Inorganic Nanopores by Supercritical Carbon Dioxide from Molecular Dynamics Simulations , 2017 .

[6]  A. Panagiotopoulos,et al.  Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n-Hexane, n-Decane, n-Hexadecane, Cyclohexane, and Squalane. , 2016, The journal of physical chemistry. B.

[7]  H. Sun,et al.  Mechanistic insight into the displacement of CH4 by CO2 in calcite slit nanopores: the effect of competitive adsorption , 2016 .

[8]  M. Castier,et al.  Diffusion in Homogeneous and in Inhomogeneous Media: A New Unified Approach. , 2016, Journal of chemical theory and computation.

[9]  Farzam Javadpour,et al.  Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale , 2016 .

[10]  D. Cao,et al.  Molecular Dynamics Simulation of Diffusion of Shale Oils in Montmorillonite , 2016 .

[11]  Yang Yu,et al.  Experimental and numerical study of the EOR potential in liquid-rich shales by cyclic gas injection , 2015 .

[12]  Quanzi Yuan,et al.  Molecular dynamics simulations of the enhanced recovery of confined methane with carbon dioxide. , 2015, Physical chemistry chemical physics : PCCP.

[13]  David R. Cole,et al.  CO2-C4H10 Mixtures Simulated in Silica Slit Pores: Relation between Structure and Dynamics , 2015 .

[14]  A. Azapagic,et al.  Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts , 2015 .

[15]  D. Cole,et al.  Propane simulated in silica pores: Adsorption isotherms, molecular structure, and mobility , 2015 .

[16]  Xiaolong Yin,et al.  Experimental Study and Modeling of the Effect of Pore Size Distribution on Hydrocarbon Phase Behavior in Nanopores , 2014 .

[17]  Xuan Tang,et al.  Shale characteristics in the southeastern Ordos Basin, China: Implications for hydrocarbon accumulation conditions and the potential of continental shales , 2014 .

[18]  Andrés Mejía,et al.  Use of Equations of State and Coarse Grained Simulations to Complement Experiments: Describing the Interfacial Properties of Carbon Dioxide + Decane and Carbon Dioxide + Eicosane Mixtures , 2014 .

[19]  Zhi Yang,et al.  Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China , 2013 .

[20]  Zhenfan Sun,et al.  Molecular dynamics simulation of diffusion and structure of some n-alkanes in near critical and supercritical carbon dioxide at infinite dilution. , 2013, Journal of Physical Chemistry B.

[21]  Yuhan Sun,et al.  A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences , 2013 .

[22]  K. Jordan,et al.  Molecular Dynamics Simulations of Carbon Dioxide Intercalation in Hydrated Na-Montmorillonite , 2013 .

[23]  Zhi Yang,et al.  Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China , 2013 .

[24]  Wilhelm Kuckshinrichs,et al.  Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 , 2012 .

[25]  P. Malfreyt,et al.  Modeling the Pressure Dependence of Acid Gas + n-Alkane Interfacial Tensions Using Atomistic Monte Carlo Simulations. , 2012 .

[26]  A. Galindo,et al.  Interfacial tension measurements and modelling of (carbon dioxide + n-alkane) and (carbon dioxide + water) binary mixtures at elevated pressures and temperatures , 2010 .

[27]  Fernando Bresme,et al.  Force-field dependence on the interfacial structure of oil–water interfaces , 2010 .

[28]  R. Loucks,et al.  Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale , 2009 .

[29]  E. A. Müller,et al.  Interfacial properties of selected binary mixtures containing n-alkanes , 2009 .

[30]  Xinbo Zhang,et al.  A Fully Flexible Potential Model for Carbon Dioxide , 2009 .

[31]  D. Henderson,et al.  The effects of deviations from Lorentz–Berthelot rules on the properties of a simple mixture , 2008 .

[32]  François-Xavier Coudert,et al.  Mechanism and kinetics of hydrated electron diffusion. , 2008, The Journal of chemical physics.

[33]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[34]  Thomas M Truskett,et al.  Layering and position-dependent diffusive dynamics of confined fluids. , 2008, Physical review letters.

[35]  Randall T. Cygan,et al.  Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field , 2004 .

[36]  P. Rossky,et al.  Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules , 2003 .

[37]  J. Delhommelle,et al.  Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation , 2001 .

[38]  Khaled A. M. Gasem,et al.  An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions: data for carbon dioxide + decane , 2001 .

[39]  William G. Mallard,et al.  The NIST Chemistry WebBook: A Chemical Data Resource on the Internet† , 2001 .

[40]  R. Grigg,et al.  A Literature Analysis of the WAG Injectivity Abnormalities in the CO2 Process , 2001 .

[41]  M. Berkowitz,et al.  Ewald summation for systems with slab geometry , 1999 .

[42]  Juan J. de Pablo,et al.  ON THE SIMULATION OF VAPOR-LIQUID EQUILIBRIA FOR ALKANES , 1998 .

[43]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[44]  Denis J. Evans,et al.  The Nose–Hoover thermostat , 1985 .

[45]  K. Gasem,et al.  Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 5. Carbon dioxide + n-tetradecane , 1985 .

[46]  F. Orr,et al.  Use of Carbon Dioxide in Enhanced Oil Recovery , 1984, Science.

[47]  W. F. Yellig,et al.  Determination and Prediction of CO2 Minimum Miscibility Pressures (includes associated paper 8876 ) , 1980 .

[48]  F. Smith Atomic Distortion and the Combining Rule for Repulsive Potentials , 1972 .

[49]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the n-Decane-CO2 System. , 1963 .

[50]  H. Chatley Cohesion , 1921, Nature.