Capacity and decoding rules for the Poisson arbitrarily varying chann

The single-user and two-user (multiple-access) Poisson arbitrarily varying channel (AVC) with input and state (peak and average power) constraints, but unlimited in bandwidth, are considered. For both cases, the deterministic and random code capacity with the average probability of error criterion is obtained. In the single-user case, A.D. Wyner's decoder (see ibid., vol.34, p.1449-61, 1988) attains the deterministic-code capacity whereas for the two-user case, a "nearest neighbor" decoder that belongs to the class of /spl beta/-decoders introduced by I. Csiszar and J. Korner (see Proc. 3rd Czechoslovak-Soviet-Hungarian Seminar on Information Theory, p.25-44, 1980) is shown to attain the deterministic-code capacity region as claimed.

[1]  Sergio Verdú,et al.  Multiple-access channels with point-process observations: Optimum demodulation , 1986, IEEE Trans. Inf. Theory.

[2]  Rudolf Ahlswede,et al.  Arbitrarily Varying Multiple-Access Channels Part I - Ericson's Symmetrizability Is Adequate, Gubner's Conjecture Is True , 1997, IEEE Trans. Inf. Theory.

[3]  Shlomo Shamai,et al.  The Poisson Multiple-Access Channel , 1998, IEEE Trans. Inf. Theory.

[4]  Brian L. Hughes,et al.  Nonconvexity of the capacity region of the multiple-access arbitrarily varying channel subject to constraints , 1995, IEEE Trans. Inf. Theory.

[5]  D. Blackwell,et al.  The Capacities of Certain Channel Classes Under Random Coding , 1960 .

[6]  Donald L. Snyder,et al.  Random point processes , 1975 .

[7]  Michael R. Frey Information capacity of the Poisson channel , 1991, IEEE Trans. Inf. Theory.

[8]  Prakash Narayan,et al.  Signal set design for band-limited memoryless multiple-access channels with soft decision demodulation , 1987, IEEE Trans. Inf. Theory.

[9]  Imre Csiszár,et al.  Capacity of the Gaussian arbitrarily varying channel , 1991, IEEE Trans. Inf. Theory.

[10]  Imre Csiszár,et al.  The capacity of the arbitrarily varying channel revisited: Positivity, constraints , 1988, IEEE Trans. Inf. Theory.

[11]  Andrew J. Viterbi,et al.  Principles of Digital Communication and Coding , 1979 .

[12]  Imre Csiszár,et al.  Arbitrarily varying channels with general alphabets and states , 1992, IEEE Trans. Inf. Theory.

[13]  Johann-Heinrich Jahn,et al.  Coding of arbitrarily varying multiuser channels , 1981, IEEE Trans. Inf. Theory.

[14]  R. Gallager Power Limited Channels: Coding, Multiaccess, and Spread Spectrum , 2002 .

[15]  Y. Kabanov The Capacity of a Channel of the Poisson Type , 1978 .

[16]  D. Varberg Convex Functions , 1973 .

[17]  John A. Gubner On the deterministic-code capacity of the multiple-access arbitrarily varying channel , 1990, IEEE Trans. Inf. Theory.

[18]  John A. Gubner State constraints for the multiple-access arbitrarily varying channel , 1991, IEEE Trans. Inf. Theory.

[19]  Thomas H. E. Ericson,et al.  Exponential error bounds for random codes in the arbitrarily varying channel , 1985, IEEE Trans. Inf. Theory.

[20]  Shlomo Shamai,et al.  Error exponents for the two-user Poisson multiple-access channel , 2001, IEEE Trans. Inf. Theory.

[21]  Imre Csiszár,et al.  Capacity and decoding rules for classes of arbitrarily varying channels , 1989, IEEE Trans. Inf. Theory.

[22]  Mark H. A. Davis,et al.  Capacity and cutoff rate for Poisson-type channels , 1980, IEEE Trans. Inf. Theory.

[23]  Y. Kutoyants,et al.  Parameter estimation for stochastic processes , 1984 .

[24]  Aaron D. Wyner,et al.  Capacity and error-exponent for the direct detection photon channel-Part II , 1988, IEEE Trans. Inf. Theory.

[25]  Sergio Verdú,et al.  On channel capacity per unit cost , 1990, IEEE Trans. Inf. Theory.

[26]  R. Ahlswede Elimination of correlation in random codes for arbitrarily varying channels , 1978 .

[27]  Prakash Narayan,et al.  Reliable Communication Under Channel Uncertainty , 1998, IEEE Trans. Inf. Theory.

[28]  John A. Gubner On the capacity region of the discrete additive multiple-access arbitrarily varying channel , 1992, IEEE Trans. Inf. Theory.