Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications

[1]  S. Hiew,et al.  Squid Sucker Ring Teeth: Multiscale Structure-Property Relationships, Sequencing, and Protein Engineering of a Thermoplastic Biopolymer. , 2017, ACS biomaterials science & engineering.

[2]  R. Ritchie,et al.  Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation. , 2016, Journal of the mechanical behavior of biomedical materials.

[3]  R. Ritchie,et al.  Enhanced protective role in materials with gradient structural orientations: Lessons from Nature. , 2016, Acta biomaterialia.

[4]  M. Meyers,et al.  Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. , 2016, Acta biomaterialia.

[5]  J. Greer,et al.  The nanocomposite nature of bone drives its strength and damage resistance. , 2016, Nature materials.

[6]  O. Paris,et al.  Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour , 2016, Scientific Reports.

[7]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[8]  Francois Barthelat,et al.  Structure and mechanics of interfaces in biological materials , 2016 .

[9]  M. Meyers,et al.  Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration , 2016 .

[10]  Z. Zhang,et al.  Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation. , 2016, Journal of the mechanical behavior of biomedical materials.

[11]  Z. Zhang,et al.  Water-assisted self-healing and property recovery in a natural dermal armor of pangolin scales. , 2016, Journal of the mechanical behavior of biomedical materials.

[12]  Huajian Gao,et al.  Nanotwin-governed toughening mechanism in hierarchically structured biological materials , 2016, Nature Communications.

[13]  Z. Zhang,et al.  Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell. , 2016, Materials science & engineering. C, Materials for biological applications.

[14]  André R Studart,et al.  Additive manufacturing of biologically-inspired materials. , 2016, Chemical Society reviews.

[15]  M. Meyers,et al.  The materials science of collagen. , 2015, Journal of the mechanical behavior of biomedical materials.

[16]  Wen Yang,et al.  Leatherback sea turtle shell: A tough and flexible biological design. , 2015, Acta biomaterialia.

[17]  H. Le Ferrand,et al.  Magnetically assisted slip casting of bioinspired heterogeneous composites. , 2015, Nature materials.

[18]  Shahrouz Amini,et al.  The Mantis Shrimp Saddle: A Biological Spring Combining Stiffness and Flexibility , 2015 .

[19]  Jordan R. Raney,et al.  Printing mesoscale architectures , 2015 .

[20]  Randall M. Erb,et al.  Designing bioinspired composite reinforcement architectures via 3D magnetic printing , 2015, Nature Communications.

[21]  M. Meyers,et al.  Structural Design Elements in Biological Materials: Application to Bioinspiration , 2015, Advanced materials.

[22]  Z. Zhang,et al.  Remarkable shape memory effect of a natural biopolymer in aqueous environment. , 2015, Biomaterials.

[23]  Zengqian Liu,et al.  Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties , 2015, Scientific Reports.

[24]  Ali Miserez,et al.  From Soft Self‐Healing Gels to Stiff Films in Suckerin‐Based Materials Through Modulation of Crosslink Density and β‐Sheet Content , 2015, Advanced materials.

[25]  Shawn Hoon,et al.  Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. , 2015, Nature chemical biology.

[26]  Shahrouz Amini,et al.  The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. , 2015, Nature materials.

[27]  C. Ortiz,et al.  A Natural 3D Interconnected Laminated Composite with Enhanced Damage Resistance , 2015 .

[28]  P. Zavattieri,et al.  Shear wave filtering in naturally-occurring Bouligand structures. , 2015, Acta biomaterialia.

[29]  Jian Lu,et al.  Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. , 2015, Acta biomaterialia.

[30]  M. Swain,et al.  Influence of structural hierarchy on the fracture behaviour of tooth enamel , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  André R Studart,et al.  Biologically inspired dynamic material systems. , 2015, Angewandte Chemie.

[32]  J. Weaver,et al.  Hierarchical structural design for fracture resistance in the shell of the pteropod Clio pyramidata , 2015, Nature Communications.

[33]  Pavel Matousek,et al.  Functional adaptation of long bone extremities involves the localized “tuning” of the cortical bone composition; evidence from Raman spectroscopy , 2014, Journal of biomedical optics.

[34]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[35]  Randall M. Erb,et al.  Functional Gradients in Biological Composites , 2014 .

[36]  Douglas C. Hofmann,et al.  Compositionally graded metals: A new frontier of additive manufacturing , 2014 .

[37]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[38]  Mason R. Mackey,et al.  Protective role of Arapaima gigas fish scales: structure and mechanical behavior. , 2014, Acta biomaterialia.

[39]  Andrew A. Shapiro,et al.  Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing , 2014, Scientific Reports.

[40]  Lei Jiang,et al.  Facile and Large‐Scale Fabrication of a Cactus‐Inspired Continuous Fog Collector , 2014 .

[41]  Peter Fratzl,et al.  Multiscale structural gradients enhance the biomechanical functionality of the spider fang , 2014, Nature Communications.

[42]  Christine Ortiz,et al.  Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. , 2014, Nature materials.

[43]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[44]  S. Oh,et al.  Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: in vitro evaluation on adipose-derived stem cell differentiation. , 2014, Acta biomaterialia.

[45]  M. Meyers,et al.  Alligator osteoderms: mechanical behavior and hierarchical structure. , 2014, Materials science & engineering. C, Materials for biological applications.

[46]  H. Su,et al.  Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages , 2014, Nature Communications.

[47]  A. Bandyopadhyay,et al.  Bone tissue engineering using 3D printing , 2013 .

[48]  Lei Jiang,et al.  Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog Collection , 2013, Advanced materials.

[49]  Po-Yu Chen,et al.  Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. , 2013, Acta biomaterialia.

[50]  H. W. Zhang,et al.  Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel , 2013, Science.

[51]  Wen Yang,et al.  Mechanical adaptability of the Bouligand-type structure in natural dermal armour , 2013, Nature Communications.

[52]  M. Buehler,et al.  Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing , 2013 .

[53]  André R. Studart,et al.  Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures , 2013 .

[54]  Shahrouz Amini,et al.  Wear and abrasion resistance selection maps of biological materials. , 2013, Acta biomaterialia.

[55]  James C. Weaver,et al.  Phase Transformations and Structural Developments in the Radular Teeth of Cryptochiton Stelleri , 2013 .

[56]  Li-Hong He,et al.  A natural functionally graded biocomposite coating--human enamel. , 2013, Acta biomaterialia.

[57]  André R Studart,et al.  Self-shaping composites with programmable bioinspired microstructures , 2013, Nature Communications.

[58]  S. Gorb,et al.  Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata , 2013, Nature Communications.

[59]  H. Wagner,et al.  Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. , 2013, Acta biomaterialia.

[60]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[61]  Wen Yang,et al.  Natural Flexible Dermal Armor , 2013, Advanced materials.

[62]  L. Gibson The hierarchical structure and mechanics of plant materials , 2012, Journal of The Royal Society Interface.

[63]  Marc A. Meyers,et al.  Biological materials: Functional adaptations and bioinspired designs , 2012 .

[64]  André R Studart,et al.  Towards High‐Performance Bioinspired Composites , 2012, Advanced materials.

[65]  P. Bártolo,et al.  Additive manufacturing of tissues and organs , 2012 .

[66]  Yong Wang,et al.  The distribution of carbonate in enamel and its correlation with structure and mechanical properties , 2012, Journal of Materials Science.

[67]  Jürgen Hartmann,et al.  A Spider's Fang: How to Design an Injection Needle Using Chitin‐Based Composite Material , 2012 .

[68]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[69]  D. Raabe,et al.  Structure, composition, and mechanical properties of shark teeth. , 2012, Journal of structural biology.

[70]  M. Burghammer,et al.  Structure-property relationships of a biological mesocrystal in the adult sea urchin spine , 2012, Proceedings of the National Academy of Sciences.

[71]  L. Geng,et al.  High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture , 2012 .

[72]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.

[73]  Ralph Spolenak,et al.  Stretchable heterogeneous composites with extreme mechanical gradients , 2012, Nature Communications.

[74]  Peter Fratzl,et al.  Enamel-like apatite crown covering amorphous mineral in a crayfish mandible , 2012, Nature Communications.

[75]  Lei Jiang,et al.  A multi-structural and multi-functional integrated fog collection system in cactus , 2012, Nature Communications.

[76]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[77]  X W Li,et al.  Structure and mechanical properties of Saxidomus purpuratus biological shells. , 2011, Journal of the mechanical behavior of biomedical materials.

[78]  Joanna McKittrick,et al.  Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. , 2011, Acta biomaterialia.

[79]  B. Harley,et al.  The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. , 2011, Biomaterials.

[80]  Thomas Speck,et al.  Plant Stems: Functional Design and Mechanics , 2011 .

[81]  Joanna McKittrick,et al.  Armadillo armor: mechanical testing and micro-structural evaluation. , 2011, Journal of the mechanical behavior of biomedical materials.

[82]  N. King,et al.  Nano-scale structure and mechanical properties of the human dentine-enamel junction. , 2011, Journal of the mechanical behavior of biomedical materials.

[83]  Juha Song,et al.  Threat-protection mechanics of an armored fish. , 2011, Journal of the mechanical behavior of biomedical materials.

[84]  J. Zhang,et al.  Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture , 2011 .

[85]  S. Ostrovidov,et al.  Gradient biomaterials for soft-to-hard interface tissue engineering. , 2011, Acta biomaterialia.

[86]  D. Arola,et al.  Contributions of microstructure and chemical composition to the mechanical properties of dentin , 2011, Journal of materials science. Materials in medicine.

[87]  N. Tao,et al.  Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper , 2011, Science.

[88]  Richard Weinkamer,et al.  Artful interfaces within biological materials , 2011 .

[89]  Brian R. Lawn,et al.  Teeth: Among Nature's Most Durable Biocomposites , 2010 .

[90]  Theo Fett,et al.  Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch. , 2010, Biomaterials.

[91]  L. Murr,et al.  Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  Ulrike G K Wegst,et al.  Biomaterials by freeze casting , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[93]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[94]  E. Olevsky,et al.  Energy absorbent natural materials and bioinspired design strategies: A review , 2010 .

[95]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[96]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[97]  Jos Malda,et al.  Strategies for zonal cartilage repair using hydrogels. , 2009, Macromolecular bioscience.

[98]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[99]  Eduardo Saiz,et al.  Designing highly toughened hybrid composites through nature-inspired hierarchical complexity , 2009 .

[100]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[101]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[102]  G. Stucky,et al.  Metals and the integrity of a biological coating: the cuticle of mussel byssus. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[103]  Robert L Sah,et al.  Tissue engineering of articular cartilage with biomimetic zones. , 2009, Tissue engineering. Part B, Reviews.

[104]  L. Gibson,et al.  Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. , 2009, Journal of biomedical materials research. Part A.

[105]  Sunita P Ho,et al.  Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin. , 2009, Acta biomaterialia.

[106]  J. McKittrick,et al.  Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). , 2009, Acta biomaterialia.

[107]  I. Burgert,et al.  A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.) , 2009, Trees.

[108]  James C. Weaver,et al.  Microstructural and Biochemical Characterization of the Nanoporous Sucker Rings from Dosidicus gigas , 2009 .

[109]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[110]  Stavros Thomopoulos,et al.  The Tendon-to-Bone Transition of the Rotator Cuff: A Preliminary Raman Spectroscopic Study Documenting the Gradual Mineralization across the Insertion in Rat Tissue Samples , 2008, Applied spectroscopy.

[111]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[112]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[113]  Patricia W. Freeman,et al.  Material properties of coyote dentine under bending: gradients in flexibility and strength by position , 2008 .

[114]  M A Meyers,et al.  Structure and mechanical properties of selected biological materials. , 2008, Journal of the mechanical behavior of biomedical materials.

[115]  J. Waite,et al.  Cutting edge structural protein from the jaws of Nereis virens. , 2008, Biomacromolecules.

[116]  M. Meyers,et al.  Structure and mechanical properties of crab exoskeletons. , 2008, Acta biomaterialia.

[117]  J. Aizenberg,et al.  Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature , 2008 .

[118]  W. Yeong,et al.  Engineering functionally graded tissue engineering scaffolds. , 2008, Journal of the mechanical behavior of biomedical materials.

[119]  Frank W. Zok,et al.  The Transition from Stiff to Compliant Materials in Squid Beaks , 2008, Science.

[120]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[121]  S. Marshall,et al.  The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. , 2007, Biomaterials.

[122]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[123]  D. Raabe,et al.  The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus , 2007 .

[124]  P. Fratzl,et al.  Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus—Lessons from Biological Materials , 2007 .

[125]  J. Waite,et al.  A nonmineralized approach to abrasion-resistant biomaterials , 2007, Proceedings of the National Academy of Sciences.

[126]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[127]  Georg E Fantner,et al.  Protective coatings on extensible biofibres. , 2007, Nature materials.

[128]  Peter Fratzl,et al.  Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell , 2007, Planta.

[129]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[130]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[131]  Eduardo Saiz,et al.  Ice-templated porous alumina structures , 2007, 1710.04651.

[132]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[133]  Y. Imamura,et al.  Graded Arrangement of Collagen Fibrils in the Equine Superficial Digital Flexor Tendon , 2007, Connective tissue research.

[134]  Glaucio H. Paulino,et al.  Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials , 2006 .

[135]  Eduard Arzt,et al.  Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos , 2006 .

[136]  Himadri S. Gupta,et al.  Mechanical modulation at the lamellar level in osteonal bone , 2006 .

[137]  M. Burghammer,et al.  Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.

[138]  J. Ralphs,et al.  Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load , 2006, Journal of anatomy.

[139]  D. Arola,et al.  Age, dehydration and fatigue crack growth in dentin. , 2006, Biomaterials.

[140]  Shanhui Fan,et al.  Direct‐Write Assembly of Three‐Dimensional Photonic Crystals: Conversion of Polymer Scaffolds to Silicon Hollow‐Woodpile Structures , 2006 .

[141]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[142]  M. Antonietti,et al.  Amorphous layer around aragonite platelets in nacre. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[144]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[145]  K. Katti,et al.  Platelet interlocks are the key to toughness and strength in nacre , 2005 .

[146]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[147]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[148]  R. O. Ritchie,et al.  The dentin–enamel junction and the fracture of human teeth , 2005, Nature materials.

[149]  L. Gibson,et al.  The effect of pore size on cell adhesion in collagen-GAG scaffolds. , 2005, Biomaterials.

[150]  Wei Sun,et al.  Multi‐nozzle deposition for construction of 3D biopolymer tissue scaffolds , 2005 .

[151]  J. Lewis Colloidal Processing of Ceramics , 2004 .

[152]  P. Hansma,et al.  Exploring molecular and mechanical gradients in structural bioscaffolds. , 2004, Biochemistry.

[153]  J. Xi,et al.  Modeling and processing of functionally graded materials for rapid prototyping , 2004 .

[154]  Joanna Aizenberg,et al.  Biological glass fibers: correlation between optical and structural properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[155]  Peter Greil,et al.  Functionally graded materials for biomedical applications , 2003 .

[156]  J. Aizenberg,et al.  Fibre-optical features of a glass sponge , 2003, Nature.

[157]  A. Perets,et al.  Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. , 2003, Journal of biomedical materials research. Part A.

[158]  Matthias Scherge,et al.  Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects1 , 2002, Integrative and comparative biology.

[159]  T. P. Weihs,et al.  Nanoindentation mapping of the mechanical properties of human molar tooth enamel. , 2002, Archives of oral biology.

[160]  A. Reiterer,et al.  Cellulose microfibril angles in a spruce branch and mechanical implications , 2001 .

[161]  P. Fratzl,et al.  Graded Microstructure and Mechanical Properties of Human Crown Dentin , 2001, Calcified Tissue International.

[162]  Robert O. Ritchie,et al.  Finite crack kinking and T-stresses in functionally graded materials , 2001 .

[163]  S. Suresh,et al.  Graded Materials for Resistance to Contact Deformation and Damage , 2001, Science.

[164]  A Tampieri,et al.  Porosity-graded hydroxyapatite ceramics to replace natural bone. , 2001, Biomaterials.

[165]  D. Hutmacher,et al.  Scaffolds in tissue engineering bone and cartilage. , 2000, Biomaterials.

[166]  A. Kawasaki,et al.  Functionally graded materials : design, processing and applications , 1999 .

[167]  M. Cima,et al.  Modeling and designing functionally graded material components for fabrication with local composition control , 1999 .

[168]  Subra Suresh,et al.  Spherical indentation of composite laminates with controlled gradients in elastic anisotropy , 1998 .

[169]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[170]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[171]  G W Marshall,et al.  The dentin substrate: structure and properties related to bonding. , 1997, Journal of dentistry.

[172]  X. Qin,et al.  Extensible collagen in mussel byssus: a natural block copolymer. , 1997, Science.

[173]  A. Giannakopoulos,et al.  Indentation of solids with gradients in elastic properties: Part I. Point force , 1997 .

[174]  A. Giannakopoulos,et al.  Indentation of solids with gradients in elastic properties: Part II. Axisymmetric indentors , 1997 .

[175]  M. Kasapi,et al.  Design complexity and fracture control in the equine hoof wall. , 1997, The Journal of experimental biology.

[176]  M. Niino,et al.  Overview of FGM Research in Japan , 1995 .

[177]  W H Douglas,et al.  Scanning electron microscopy of type I collagen at the dentin-enamel junction of human teeth. , 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[178]  D R Carter,et al.  Mechanical properties and composition of cortical bone. , 1978, Clinical orthopaedics and related research.

[179]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[180]  P. Fratzl,et al.  The Mechanical Role of Metal Ions in Biogenic Protein-Based Materials , 2015 .

[181]  S. Bianchi,et al.  Functional Attachment of Soft Tissues to Bone : Development , Healing , and Tissue Engineering , 2014 .

[182]  M. Fritz,et al.  Gastropod nacre: structure, properties and growth--biological, chemical and physical basics. , 2011, Biophysical chemistry.

[183]  James C. Weaver,et al.  Analysis of an ultra hard magnetic biomineral in chiton radular teeth , 2010 .

[184]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[185]  Frank Zok,et al.  Jumbo squid beaks: inspiration for design of robust organic composites. , 2007, Acta biomaterialia.

[186]  Nitin Kumar,et al.  High-performance elastomeric nanocomposites via solvent-exchange processing. , 2007, Nature materials.

[187]  Haiping Lian,et al.  Study on bimetallic bronze swords in ancient China , 2002 .

[188]  S A Gansky,et al.  Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. , 2001, Journal of biomedical materials research.

[189]  Lorna J. Gibson,et al.  Cellular materials as porous scaffolds for tissue engineering , 2001 .

[190]  Subra Suresh,et al.  Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour , 1997 .

[191]  Subra Suresh,et al.  Functionally graded metals and metal-ceramic composites: Part 1 Processing , 1995 .

[192]  Gao Huajian Fracture analysis of nonhomogeneous materials via a moduli-perturbation approach , 1991 .

[193]  J O Outwater,et al.  Mechanical properties of bone as a function of position and orientation. , 1974, Journal of biomechanics.

[194]  Y Bouligand,et al.  Twisted fibrous arrangements in biological materials and cholesteric mesophases. , 1972, Tissue & cell.

[195]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .