Fast GL(n)-Invariant Framework for Tensors Regularization

AbstractWe propose a novel framework for regularization of symmetric positive-definite (SPD) tensors (e.g., diffusion tensors). This framework is based on a local differential geometric approach. The manifold of symmetric positive-definite (SPD) matrices, Pn, is parameterized via the Iwasawa coordinate system. In this framework distances on Pn are measured in terms of a natural GL(n)-invariant metric. Via the mathematical concept of fiber bundles, we describe the tensor-valued image as a section where the metric over the section is induced by the metric over Pn. Then, a functional over the sections accompanied by a suitable data fitting term is defined. The variation of this functional with respect to the Iwasawa coordinates leads to a set of $\frac{1}{2}n(n+1)$ coupled equations of motion. By means of the gradient descent method, these equations of motion define a Beltrami flow over Pn. It turns out that the local coordinate approach via the Iwasawa coordinate system results in very simple numerics that leads to fast convergence of the algorithm. Regularization results as well as results of fibers tractography for DTI are presented.

[1]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[2]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[3]  S. J. Patterson,et al.  HARMONIC ANALYSIS ON SYMMETRIC SPACES AND APPLICATIONS , 1990 .

[4]  John F. Price,et al.  Lie Groups and Compact Groups: The geometry of Lie groups , 1977 .

[5]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[6]  Nathan Intrator,et al.  Variational multiple-tensor fitting of fiber-ambiguous diffusion-weighted magnetic resonance imaging voxels. , 2008, Magnetic resonance imaging.

[7]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[8]  M. Bastin,et al.  On the application of a non‐CPMG single‐shot fast spin‐echo sequence to diffusion tensor MRI of the human brain , 2002, Magnetic resonance in medicine.

[9]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[10]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[11]  Nir A. Sochen,et al.  Coordinate-Free Diffusion over Compact Lie-Groups , 2007, SSVM.

[12]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[13]  Joachim Weickert,et al.  Curvature-Driven PDE Methods for Matrix-Valued Images , 2006, International Journal of Computer Vision.

[14]  B. A. Rozenfelʹd Geometry of Lie groups , 1997 .

[15]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[16]  J. Weickert,et al.  Visualization and Processing of Tensor Fields (Mathematics and Visualization) , 2005 .

[17]  Rachid Deriche,et al.  Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.

[18]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[19]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[20]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[21]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[22]  Jay Jorgenson,et al.  Posn(r) and Eisenstein Series , 2005 .

[23]  Maher Moakher,et al.  Riemannian Curvature-Driven Flows for Tensor-Valued Data , 2007, SSVM.

[24]  Ron Kimmel,et al.  From High Energy Physics to Low Level Vision , 1997, Scale-Space.

[25]  Simon R. Arridge,et al.  A Regularization Scheme for Diffusion Tensor Magnetic Resonance Images , 2001, IPMI.

[26]  S. Lang Fundamentals of differential geometry , 1998 .

[27]  Maher Moakher,et al.  Visualization and Processing of Tensor Fields , 2006, Mathematics and Visualization.

[28]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[29]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[30]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[31]  Rachid Deriche,et al.  Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension , 2005, VLSM.

[32]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[33]  J. Jost Riemannian geometry and geometric analysis , 1995 .