CoMet—a web server for comparative functional profiling of metagenomes

Analyzing the functional potential of newly sequenced genomes and metagenomes has become a common task in biomedical and biological research. With the advent of high-throughput sequencing technologies comparative metagenomics opens the way to elucidate the genetically determined similarities and differences of complex microbial communities. We developed the web server ‘CoMet’ (http://comet.gobics.de), which provides an easy-to-use comparative metagenomics platform that is well-suitable for the analysis of large collections of metagenomic short read data. CoMet combines the ORF finding and subsequent assignment of protein sequences to Pfam domain families with a comparative statistical analysis. Besides comprehensive tabular data files, the CoMet server also provides visually interpretable output in terms of hierarchical clustering and multi-dimensional scaling plots and thus allows a quick overview of a given set of metagenomic samples.

[1]  I-Min A. Chen,et al.  IMG/M: a data management and analysis system for metagenomes , 2007, Nucleic Acids Res..

[2]  P. Meinicke UFO: a web server for ultra-fast functional profiling of whole genome protein sequences , 2009, BMC Genomics.

[3]  Katharina J. Hoff,et al.  BMC Bioinformatics BioMed Central Methodology article Gene prediction in metagenomic fragments: A large scale machine , 2008 .

[4]  Fabian Schreiber,et al.  Treephyler: fast taxonomic profiling of metagenomes , 2010, Bioinform..

[5]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[6]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[7]  R. Daniel The metagenomics of soil , 2005, Nature Reviews Microbiology.

[8]  Renzo Kottmann,et al.  Megx.net: integrated database resource for marine ecological genomics , 2009, Nucleic Acids Res..

[9]  Forest Rohwer,et al.  An application of statistics to comparative metagenomics , 2006, BMC Bioinformatics.

[10]  Weizhong Li,et al.  Analysis and comparison of very large metagenomes with fast clustering and functional annotation , 2009, BMC Bioinformatics.

[11]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[12]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[13]  R. Overbeek,et al.  FIGfams: yet another set of protein families , 2009, Nucleic acids research.

[14]  Rick L. Stevens,et al.  Functional metagenomic profiling of nine biomes , 2008, Nature.

[15]  Peter Meinicke,et al.  Word correlation matrices for protein sequence analysis and remote homology detection , 2008, BMC Bioinformatics.

[16]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[17]  Wolfgang Gerlach,et al.  WebCARMA: a web application for the functional and taxonomic classification of unassembled metagenomic reads , 2009, BMC Bioinformatics.

[18]  Kiyoko F. Aoki-Kinoshita,et al.  Gene annotation and pathway mapping in KEGG. , 2007, Methods in molecular biology.

[19]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[20]  E. Aronson,et al.  Theory and method , 1985 .

[21]  S. Tringe,et al.  Comparative Metagenomics of Microbial Communities , 2004, Science.

[22]  Johannes Goll,et al.  Bioinformatics Applications Note Database and Ontologies Metarep: Jcvi Metagenomics Reports—an Open Source Tool for High-performance Comparative Metagenomics , 2022 .

[23]  S. Kravitz,et al.  CAMERA: A Community Resource for Metagenomics , 2007, PLoS biology.

[24]  Benjamin A. Shoemaker,et al.  CDD: a database of conserved domain alignments with links to domain three-dimensional structure , 2002, Nucleic Acids Res..

[25]  Peer Bork,et al.  Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat , 2008, Molecular systems biology.