A generalization of the Chandler Davis convexity theorem

In 1957 Chandler Davis proved a theorem that a rotationally invariant function on symmetric matrices is convex if and only if it is convex on the diagonal matrices. We generalize this result to groups acting nonlinearly on convex subsets of arbitrary vector spaces thereby understanding the abstract mechanism behind the classical theorem. We apply the new theorem to a problem from the mathematical theory of composite materials and derive its corollaries in the Lie algebra setting. Using the latter, we show that the Pfaffian is log-concave.

[1]  Graeme W. Milton,et al.  On characterizing the set of possible effective tensors of composites: The variational method and the translation method , 1990 .

[2]  Chandler Davis All convex invariant functions of hermitian matrices , 1957 .

[3]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[4]  F. Berezin,et al.  Introduction to super analysis , 1987 .

[5]  Yury Grabovsky,et al.  Exact Relations for Effective Tensors of Polycrystals. II. Applications to Elasticity and Piezoelectricity , 1998 .

[6]  Daniel S. Sage,et al.  Exact relations for effective tensors of composites: Necessary conditions and sufficient conditions , 2000 .

[7]  Y. Grabovsky Algebra, Geometry, and Computations of Exact Relations for Effective Moduli of Composites , 2004 .

[8]  G. Milton The Theory of Composites , 2002 .

[9]  B. Kostant On convexity, the Weyl group and the Iwasawa decomposition , 1973 .

[10]  Andrej Cherkaev,et al.  On the effective conductivity of polycrystals and a three‐dimensional phase‐interchange inequality , 1988 .

[11]  Y. Grabovsky Exact Relations for Effective Tensors of Polycrystals. I. Necessary Conditions , 1998 .

[12]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[13]  A. S. Lewis,et al.  Group Invariance and Convex Matrix Analysis , 1996, SIAM J. Matrix Anal. Appl..

[14]  A. Kirillov,et al.  Introduction to Superanalysis , 1987 .

[15]  G. Francfort,et al.  Optimal bounds for conduction in two-dimensional, multiphase, polycrystalline media , 1987 .

[16]  G. Milton,et al.  Optimal G-Closure Bounds¶via Stability under Lamination , 1999 .

[17]  Shlomo Sternberg,et al.  Convexity properties of the moment mapping. II , 1982 .

[18]  A. Lewis Convex analysis on Cartan subspaces , 2000 .