Visual Systems for Interactive Exploration and Mining of Large-Scale Neuroimaging Data Archives

While technological advancements in neuroimaging scanner engineering have improved the efficiency of data acquisition, electronic data capture methods will likewise significantly expedite the populating of large-scale neuroimaging databases. As they do and these archives grow in size, a particular challenge lies in examining and interacting with the information that these resources contain through the development of compelling, user-driven approaches for data exploration and mining. In this article, we introduce the informatics visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and dynamic interaction with the contents of large-scale neuroimaging data sets. We describe the rationale behind INVIZIAN, detail its development, and demonstrate its usage in examining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image volumes from across a diverse set of clinical neuroimaging studies drawn from a leading neuroimaging database. Using a collection of cortical surface metrics and means for examining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate space and enables classification of clusters of neuroanatomically similar MRI images and data mining. As an initial step toward addressing the need for such user-friendly tools, INVIZIAN provides a highly unique means to interact with large quantities of electronic brain imaging archives in ways suitable for hypothesis generation and data mining.

[1]  Anders M. Dale,et al.  Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: A multi-sample MRI study , 2009, NeuroImage.

[2]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[3]  Alex Pentland,et al.  Recognition in face space , 1991, Other Conferences.

[4]  Tamara Munzner,et al.  Steerable, Progressive Multidimensional Scaling , 2004, IEEE Symposium on Information Visualization.

[5]  J. Morris,et al.  Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area , 2009, Neurobiology of Aging.

[6]  Sankar K. Pal,et al.  Rough Self Organizing Map , 2004, Applied Intelligence.

[7]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[8]  J. Mazziotta,et al.  Automated image registration , 1993 .

[9]  A. Tversky,et al.  Foundations of multidimensional scaling. , 1968, Psychological review.

[10]  Arthur W. Toga,et al.  Effi cient , distributed and interactive neuroimaging data analysis using the LONI Pipeline , 2009 .

[11]  D. Stott Parker,et al.  Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline , 2010, PloS one.

[12]  Michael Schmitt,et al.  Neuroimaging databases as a resource for scientific discovery. , 2005, International review of neurobiology.

[13]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[14]  J B Woodward,et al.  The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[16]  Yik Y Teo,et al.  Exploratory data analysis in large-scale genetic studies. , 2010, Biostatistics.

[17]  Matthew O. Ward,et al.  Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets , 2003, VisSym.

[18]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[19]  John D. Van Horn,et al.  Mapping the Human Brain: New Insights from fMRI Data Sharing , 2007, Neuroinformatics.

[20]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[21]  C. Rowe,et al.  The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease , 2009, International Psychogeriatrics.

[22]  Michael S. Gazzaniga,et al.  Databasing fMRI studies — towards a 'discovery science' of brain function , 2002, Nature Reviews Neuroscience.

[23]  Paul M. Thompson,et al.  Brain Anatomical Structure Segmentation by Hybrid Discriminative/Generative Models , 2008, IEEE Transactions on Medical Imaging.

[24]  Arthur W. Toga,et al.  Is it time to re-prioritize neuroimaging databases and digital repositories? , 2009, NeuroImage.

[25]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[26]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[27]  S. Johansson,et al.  Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[28]  A. Toga,et al.  Multisite neuroimaging trials , 2009, Current opinion in neurology.

[29]  Shigeo Abe Support Vector Machines for Pattern Classification , 2010, Advances in Pattern Recognition.

[30]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[31]  J. Pariente,et al.  Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve , 2009, Brain : a journal of neurology.

[32]  Arthur W. Toga,et al.  Brain pattern analysis of cortical valued distributions , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[33]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[34]  M. Weiner,et al.  Automated MRI measures predict progression to Alzheimer's disease , 2010, Neurobiology of Aging.

[35]  Kenneth I. Joy,et al.  An Application of Multivariate Statistical Analysis for Query-Driven Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[36]  Tyrone D. Cannon,et al.  Phenomics: the systematic study of phenotypes on a genome-wide scale , 2009, Neuroscience.

[37]  Luc Van Gool,et al.  Automated image registration , 2004 .

[38]  P. Thompson,et al.  Computational anatomical methods as applied to ageing and dementia. , 2007, The British journal of radiology.

[39]  Zhijin Wu,et al.  Exploration, visualization, and preprocessing of high-dimensional data. , 2010, Methods in molecular biology.

[40]  Lei Xu,et al.  A PCA approach for fast retrieval of structural patterns in attributed graphs , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[41]  Kiralee M. Hayashi,et al.  Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia , 2004, NeuroImage.

[42]  Kirk R. Daffner,et al.  Early Diagnosis of Alzheimer’s Disease , 2000 .

[43]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[44]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[45]  E. Metter,et al.  Cognitive and brain imaging measures of Alzheimer's disease , 1988, Neurobiology of Aging.

[46]  Arthur W. Toga,et al.  Neuroinformatics Original Research Article , 2022 .

[47]  Roman Filipovych,et al.  Semi-supervised pattern classification of medical images: Application to mild cognitive impairment (MCI) , 2011, NeuroImage.

[48]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[49]  R. Woods,et al.  Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. , 2001, Cerebral cortex.

[50]  Michael Unser,et al.  A review of wavelets in biomedical applications , 1996, Proc. IEEE.

[51]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[52]  Duncan Temple Lang,et al.  An introduction to rggobi , 2006 .

[53]  Deborah F. Swayne,et al.  Interactive and Dynamic Graphics for Data Analysis - With R and GGobi , 2007, Use R.

[54]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[55]  Reshma Khemchandani,et al.  Twin Support Vector Machines for Pattern Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  F Chollet,et al.  [Early diagnosis of Alzheimer's disease]. , 2012, Revue neurologique.

[57]  R. Harner,et al.  Automatic EEG Spike Detection , 2009, Clinical EEG and neuroscience.

[58]  Peter Auer,et al.  Object recognition using segmentation for feature detection , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[59]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[60]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[62]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[63]  James P. Ahrens,et al.  Scout: a hardware-accelerated system for quantitatively driven visualization and analysis , 2004, IEEE Visualization 2004.