An investigation of intercalation-induced stresses generated during lithium transport through sol–gel derived LixMn2O4 film electrode using a laser beam deflection method

Abstract The stress changes Δσ generated during lithium transport through the sol–gel derived LixMn2O4 film electrodes annealed at 773 and 873 K were quantitatively determined as a function of the lithium stoichiometry x using a laser beam deflection method (LBDM). Δσ generated during a real potential step between an initial electrode potential and a final applied potential was uniquely specified by the Δσ versus x curve. The LixMn2O4 film annealed at 773 K for 24 h (low temperature (LT)-LixMn2O4) showed larger capacity than the LixMn2O4 film annealed at 873 K for 6 h (high temperature (HT)-LixMn2O4) and this result is ascribed to the fact that the smaller the grain size is, the more increases the electrochemically active area of the film electrode. From the analysis of the normalised Δσ transient measured simultaneously along with the cyclic voltammogram in the potential range of 2.5–3.4  V Li / L i + , it is found that normalised Δσ generated in the LT-LixMn2O4 was smaller than that in the HT-LixMn2O4 during the lithium intercalation/de-intercalation around 3.0  V Li / L i + region. This result gives an experimental evidence for the fact that the Jahn–Teller distortion is suppressed by the increase in the average oxidation state of manganese with decreasing in annealing temperature.

[1]  S. Ikeda,et al.  X-ray photoelectron spectroscopy of manganese—oxygen systems , 1975 .

[2]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[3]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[4]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[5]  T. Gustafsson,et al.  Kinetic study of LiMn2O4 cathodes by in situ XRD with constant-current cycling and potential stepping , 2002 .

[6]  J. Birman Configurational Instability in Solids: Diamond and Zinc Blende , 1962 .

[7]  Christopher S. Johnson,et al.  Stabilization of insertion electrodes for lithium batteries , 1998 .

[8]  Joo-Young Go,et al.  An investigation of intercalation-induced stresses generated during lithium transport through Li1 − δCoO2 film electrode using a laser beam deflection method , 2004 .

[9]  J. Goodenough,et al.  Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0 , 1982 .

[10]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[11]  J. Dahn,et al.  Synthesis and Characterization of Li1 + x Mn2 − x O 4 for Li‐Ion Battery Applications , 1996 .

[12]  Hamada,et al.  Crucial role of the lattice distortion in the magnetism of LaMnO3. , 1996, Physical review letters.

[13]  C. Ballhausen,et al.  Inherent configurational instability of octahedral inorganic complexes in Eg electronic states , 1958 .

[14]  D. Ginley,et al.  New Technique for Measurement of Electrode Strain during Electrochemical Reactions , 1988 .

[15]  G. Láng,et al.  On the electrochemical applications of the bending beam method , 2000 .

[16]  Thomas A. Carlson,et al.  Use of X‐Ray Photoelectron Spectroscopy to Study Bonding in Cr, Mn, Fe, and Co Compounds , 1972 .

[17]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[18]  J. Goodenough,et al.  Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4–Li2Mn4O9–Li4Mn5O12System , 1996 .

[19]  S. Jaswal Electronic structure and properties of transition-metal glasses: NixZr1−x , 1985 .

[20]  A. L. Loeb,et al.  Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels , 1955 .

[21]  N. Wüthrich The measurement of electrostrictive stresses in anodic barrier layers on aluminium by means of a membrane method , 1980 .

[22]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[23]  Jeff Dahn,et al.  Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure , 1990 .

[24]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[25]  M. Thackeray,et al.  Insertion/extraction reactions of lithium with LiV2O4 , 1985 .

[26]  Michael D. Kaplan,et al.  Cooperative Phenomena in Jahn-Teller Crystals , 1995 .

[27]  J. Barker,et al.  An electrochemical investigation into the lithium insertion properties of LixNiO2 (0 ≤ x ≤ 1) , 1996 .

[28]  G. Farrington,et al.  Mechanism of the electrochemical insertion of lithium into LiMn{sub 2}O{sub 4} spinels , 1998 .

[29]  Jeng‐Kuei Chang,et al.  Effects of Temperature and Concentration on the Structure and Specific Capacitance of Manganese Oxide Deposited in Manganese Acetate Solution , 2004 .

[30]  A. Yamada,et al.  Jahn-Teller structural phase transition around 280K in LiMn2O4 , 1995 .

[31]  S. Pyun,et al.  Investigation of lithium transport through LiMn2O4 film electrode in aqueous LiNO3 solution , 2004 .

[32]  D. Murphy,et al.  Ternary LixTiO2 phases from insertion reactions , 1983 .

[33]  Chung-Hsin Lu,et al.  Influence of the particle size on the electrochemical properties of lithium manganese oxide , 2001 .

[34]  M. Thackeray,et al.  An Investigation of Spinel‐Related and Orthorhombic LiMnO2 Cathodes for Rechargeable Lithium Batteries , 1994 .

[35]  Dahn,et al.  Changes in the voltage profile of Li/Li1+xMn2-xO4 cells as a function of x. , 1996, Physical review. B, Condensed matter.

[36]  A. D. Kock,et al.  Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery Applications , 1992 .

[37]  M. Courbon,et al.  Improvement of the cantilever beam technique for stress measurement during the physical vapor deposition process , 1998 .

[38]  M. Balasubramanian,et al.  IN SITU INVESTIGATION OF PHASE TRANSITIONS OF LI1+YMN2O4 SPINEL DURING LI-ION EXTRACTION AND INSERTION , 2002 .

[39]  P. Strobel,et al.  Lithium intercalation in LiMgMnO and LiAlMnO spinels , 1996 .

[40]  M. Tournoux,et al.  Phases LixMnO2λ rattachees au type spinelle , 1983 .

[41]  G. Kearley,et al.  Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. , 2003, Journal of the American Chemical Society.

[42]  C. Ballhausen,et al.  A MO calculation of the static Jahn-Teller effect in CuF6 -4 , 1966 .

[43]  J. M. Rosolen,et al.  Stress in Carbon Film Electrodes during Li + Electrochemical Intercalation , 1996 .

[44]  Y. Shao-horn,et al.  Structural fatigue in spinel electrodes in Li/Lix[Mn2]O4 cells , 1999 .

[45]  Y. Chiang,et al.  Origin of Cycling Stability in Monoclinic‐ and Orthorhombic‐Phase Lithium Manganese Oxide Cathodes , 1999 .

[46]  D. Adler,et al.  THEORY OF SEMICONDUCTOR-TO-METAL TRANSITIONS , 1967 .

[47]  D. Hercules,et al.  Surface spectroscopic characterization of Cu/Al2O3 catalysts , 1985 .

[48]  D. F. Johnston Group theory in solid state physics , 1960 .

[49]  S. Pyun,et al.  Stresses of a Titanium Thin‐Film Electrode Generated during Anodic Oxidation by a Beam‐Bending Method , 2000 .

[50]  Joo-Young Go,et al.  Lithium transport through the Li1−δCoO2 film electrode prepared by RF magnetron sputtering , 2002 .

[51]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[52]  Takashi Uchida,et al.  The Spinel Phases LiM y Mn2 − y O 4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries , 1996 .

[53]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[54]  A. D. Kock,et al.  The versatility of MnO2 for lithium battery applications , 1993 .

[55]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[56]  R. J. Neat,et al.  Performance of lithiummanganese oxide spinel electrodes in a lithium polymer electrolyte cell , 1991 .

[57]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .

[58]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[59]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[60]  John D. Dow,et al.  The Jahn-Teller effect in molecules and crystals , 1972 .

[61]  Kyung Yoon Chung,et al.  Investigation of Structural Fatigue in Spinel Electrodes Using In Situ Laser Probe Beam Deflection Technique , 2002 .

[62]  J. Dahn,et al.  Synthesis and electrochemistry of spinel LTLiCoO2 , 1993 .

[63]  S. Pyun,et al.  Lithium transport through a sol–gel derived LiMn2O4 film electrode: analyses of potentiostatic current transient and linear sweep voltammogram by Monte Carlo simulation , 2002 .

[64]  Interplay of charge and orbital ordering in manganese perovskites , 1998, cond-mat/9802184.

[65]  R. Smoluchowski,et al.  Elements of X‐Ray Diffraction , 1957 .

[66]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[67]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[68]  Xiao‐Qing Yang,et al.  In Situ Synchrotron X‐Ray Diffraction Studies of the Phase Transitions in Li x Mn2 O 4 Cathode Materials , 1999 .

[69]  Kyung Yoon Chung,et al.  Investigations into capacity fading as a result of a Jahn–Teller distortion in 4 V LiMn2O4 thin film electrodes , 2004 .