From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits

The discovery of the visible light-emitting diode (LED) 50 years ago by Holonyak and Bevacqua and the associated demonstration of the viability of the III-V semiconductor alloy created a foundational basis for the field of optoelectronics. Key advances which enabled the progression from the first visible LED to today's III-V photonic integrated circuits (PICs) are described. Furthermore, the current state-of-the-art 500-Gb/s and 1-Tb/s large-scale InP transmitter and receiver PICs and their essential role in the optical communications networks are reviewed.

[1]  U. Koren,et al.  A 16*1 wavelength division multiplexer with integrated distributed Bragg reflector lasers and electroabsorption modulators , 1993, IEEE Photonics Technology Letters.

[2]  Robert N. Noyce,et al.  Semiconductor Device-and-Lead Structure, Reprint of U.S. Patent 2,981,877 (Issued April 25, 1961. Filed July 30, 1959) , 2007, IEEE Solid-State Circuits Newsletter.

[3]  L.A. Coldren,et al.  Tunable semiconductor lasers: a tutorial , 2004, Journal of Lightwave Technology.

[4]  W. Dumke,et al.  STIMULATED EMISSION OF RADIATION FROM GaAs p‐n JUNCTIONS , 1962 .

[5]  Y. Yoshikuni,et al.  Monolithic integration of InGaAs/InP DFB lasers and InGaAs/InAlAs MQW optical modulators , 1986 .

[6]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[7]  J. S. Kilby,et al.  Miniaturized electronic circuits [US Patent No. 3,138, 743] , 2007 .

[8]  Harold M. Manasevit,et al.  Single-crystal gallium arsenide on insulating substrates , 1968 .

[9]  Larry A. Coldren,et al.  A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator , 2003 .

[10]  Won-Tien Tsang,et al.  Al0.48In0.52 As/Ga0.47In0.53 As/Al0.48In0.52As double‐heterostructure lasers grown by molecular‐beam epitaxy with lasing wavelength at 1.65 μm , 1981 .

[11]  Milton Feng,et al.  Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors , 2004 .

[12]  J. Bailey,et al.  A comprehensive sequential yield analysis methodology and the financial payback for higher yields , 1999, 10th Annual IEEE/SEMI. Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 99 Proceedings (Cat. No.99CH36295).

[13]  Yuichi Matsushima,et al.  Room-temperature CW operation of MBE-grown GaInAs/AlInAs mow lasers in 1.5μm range , 1987 .

[14]  M. Smit New focusing and dispersive planar component based on an optical phased array , 1988 .

[15]  R. Nagarajan,et al.  The Realization of Large-Scale Photonic Integrated Circuits and the Associated Impact on Fiber-Optic Communication Systems , 2006, Journal of Lightwave Technology.

[16]  Peter J. Winzer,et al.  Advanced Optical Modulation Formats , 2006, Proceedings of the IEEE.

[17]  G. E. Stillman,et al.  LPE In1−xGaxP1−zAsz (x∼0.12, z∼0.26) DH laser with multiple thin‐layer (<500 Å) active region , 1977 .

[18]  R. Ulrich,et al.  Self‐imaging in homogeneous planar optical waveguides , 1975 .

[19]  Steve Grubb,et al.  10-Channel x 40Gb/s per Channel DQPSK Monolithically Integrated InP-Based Transmitter PIC , 2008 .

[20]  Uziel Koren,et al.  Semiconductor photonic integrated circuits , 1991, Integrated Photonics Research.

[21]  Robert C. Leachman,et al.  Benchmarking Semiconductor Manufacturing , 1997 .

[22]  W. E. Krag,et al.  SEMICONDUCTOR MASER OF GaAs , 1962 .

[23]  Radhakrishnan Nagarajan,et al.  10 Channel, 45.6 Gb/s per Channel, Polarization-Multiplexed DQPSK, InP Receiver Photonic Integrated Circuit , 2011, Journal of Lightwave Technology.

[24]  Emory B. Michel Yield analysis , 1991 .

[25]  H. M. Macksey,et al.  Double Heterojunction AlGaAsP Quaternary Lasers , 1971 .

[26]  Joseph P. Donnelly,et al.  Room-Temperature Operation of GaInAsp/Inp Double-Heterostructure Diode Lasers Emitting at 1.1 µm* , 1976, Integrated Optics.

[27]  H. M. Manasevit The Use of Metal‐Organics in the Preparation of Semiconductor Materials: III . Studies of Epitaxial III ‐ V Aluminum Compound Formation Using Trimethylaluminum , 1971 .

[28]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[29]  Ivan P. Kaminow,et al.  Optical Integrated Circuits: A Personal Perspective , 2008, Journal of Lightwave Technology.

[30]  C. Dragone An N*N optical multiplexer using a planar arrangement of two star couplers , 1991, IEEE Photonics Technology Letters.

[31]  G.E. Moore,et al.  No exponential is forever: but "Forever" can be delayed! [semiconductor industry] , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[32]  R. L. Petritz,et al.  Detectivity and Preamplifier Considerations for Indium Antimonide Photovoltaic Detectors , 1959, Proceedings of the IRE.

[33]  Shigehisa Arai,et al.  GaInAsP/InP integrated laser with butt-jointed built-in distributed-Bragg-reflection waveguide , 1981 .

[34]  Jean-Marie Marchal,et al.  The radial flow planetary reactor : low pressure versus atmospheric pressure MOVPE , 1991 .

[35]  Shigehisa Arai,et al.  Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector , 1983 .

[36]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[37]  M. Fisher,et al.  Current Status of Large-Scale InP Photonic Integrated Circuits , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  D. Scifres,et al.  Distributed‐feedback single heterojunction GaAs diode laser , 1974 .

[39]  P. D. Dapkus,et al.  Continuous 300 °K laser operation of single‐quantum‐well AlxGa1−xAs‐GaAs heterostructure diodes grown by metalorganic chemical vapor deposition , 1979 .

[40]  L. Coldren,et al.  Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings , 1993 .

[41]  Matthias Kuntz,et al.  10 Channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[42]  Jr. Nick Holonyak,et al.  Semiconductor alloy lasers--1962 , 1987 .

[43]  James A. Cunningham,et al.  Management: Using the learning curve as a management tool: The learning curve can help in preparing cost reduction programs, pricing forecasts, and product development goals , 1980, IEEE Spectrum.

[44]  J. V. D. van der Tol,et al.  Low-loss phased-array based 4-channel wavelength demultiplexer integrated with photodetectors , 1994, IEEE Photonics Technology Letters.

[45]  U. Koren,et al.  Balanced operation of a GaInAs/GaInAsP multiple-quantum-well integrated heterodyne receiver , 1989, IEEE Photonics Technology Letters.

[46]  C. Caneau,et al.  Ultracompact monolithic integration of balanced, polarization diversity photodetectors for coherent lightwave receivers , 1992, IEEE Photonics Technology Letters.

[47]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[48]  T. P. Pearsall,et al.  Growth and characterization of lattice-matched epitaxial films of GaxIn1−xAs/InP by liquid-phase epitaxy , 1978 .

[49]  J. Barton,et al.  Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers , 2000, IEEE Photonics Technology Letters.

[50]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[51]  Hans-Ulrich Pfeiffer,et al.  Reliability of 980 nm pump lasers for submarine, long-haul terrestrial, and low cost metro applications , 2002, Optical Fiber Communication Conference and Exhibit.

[52]  J. Thomas,et al.  Production of Epitaxial Films of Antimony on Disordered Substrates , 1968, Nature.

[53]  Karl Hess,et al.  Disorder of an AlAs‐GaAs superlattice by impurity diffusion , 1981 .

[54]  R. Dupuis,et al.  III-V semiconductor heterojunction devices grown by metalorganic chemical vapor deposition , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  Joseph P. Donnelly,et al.  Optical guided‐wave gallium arsenide monolithic interferometer , 1984 .

[56]  Y. F. Lin,et al.  Strained‐layer quantum‐well injection laser , 1984 .

[57]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[58]  Fred A. Kish,et al.  Semiconductor Photonic Integrated Circuit Transmitters and Receivers , 2013 .

[59]  Radhakrishnan Nagarajan,et al.  10 channel, 45.6Gb/s per channel, polarization multiplexed DQPSK InP receiver photonic integrated circuit , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[60]  Y. Yoshikuni,et al.  High-speed long-wavelength optical modulation in InGaAs/InAlAs multiple quantum wells , 1985 .

[61]  David F. Welch,et al.  Large-Scale Photonic Integrated Circuits , 2007 .

[62]  Charles H. Stapper LSI yield modeling and process monitoring , 2000, IBM J. Res. Dev..

[63]  Stewart E. Miller,et al.  Integrated optics: An introduction , 1969 .

[64]  C. Dragone,et al.  Demonstration of a 15*15 arrayed waveguide multiplexer on InP , 1992, IEEE Photonics Technology Letters.

[65]  Radhakrishnan Nagarajan,et al.  Large-Scale InP Transmitter PICs for PM-DQPSK Fiber Transmission Systems , 2010, IEEE Photonics Technology Letters.

[66]  M. Fisher,et al.  1.12 Tb/s superchannel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC). , 2011, Optics express.

[67]  J. Bardeen,et al.  The transistor, a semi-conductor triode , 1948 .

[68]  Osamu Wada,et al.  Recent progress in optoelectric integrated circuits (OEIC's) , 1986 .

[69]  Mehrdad Ziari,et al.  Large-Scale Photonic Integrated Circuit Transmitters with Monolithically Integrated Semiconductor Optical Amplifiers , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[70]  Yuichi Matsushima,et al.  Room-temperature cw operation of distributed-feedback buried-heterostructure ingaasp/inp lasers emitting at 1.57 μm , 1981 .

[71]  C.H. Stapper,et al.  Integrated circuit yield statistics , 1983, Proceedings of the IEEE.

[72]  Vinayak Dangui,et al.  Five-channel, 114 Gbit/s per channel, dual carrier, dual polarisation, coherent QPSK, monolithic InP receiver photonic integrated circuit , 2011 .

[73]  T. Moss,et al.  Optical Absorption Edge in GaAs and Its Dependence on Electric Field , 1961 .

[74]  R. Alferness Guided-wave devices for optical communication , 1981 .

[75]  M. Fisher,et al.  Tunable 100 Gb/s photonic integrated circuit transmitter and receiver , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[76]  P. D. Dapkus,et al.  Room‐temperature operation of Ga(1−x)AlxAs/GaAs double‐heterostructure lasers grown by metalorganic chemical vapor deposition , 1977 .

[77]  P. Roentgen,et al.  Selective area MOVPE of GaInAs/InP heterostructures on masked and nonplanar (100) and ?111? substrates , 1991 .

[78]  Katsuhiko Nishida,et al.  InGaAsP heterostructure avalanche photodiodes with high avalanche gain , 1979 .

[79]  L A Coldren,et al.  High Performance InP-Based Photonic ICs—A Tutorial , 2011, Journal of Lightwave Technology.

[80]  S. Murthy,et al.  Large-Scale InP Photonic Integrated Circuits: Enabling Efficient Scaling of Optical Transport Networks , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[81]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[82]  John E. Bowers,et al.  High-speed zero-bias waveguide photodetectors , 1986 .

[83]  N. Holonyak,et al.  From transistors to light emitters , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[84]  Milton Feng,et al.  Laser operation of a heterojunction bipolar light-emitting transistor , 2004 .

[85]  P. D. Dapkus,et al.  Ga(1−x)AlxAs/Ga(1−y)AlyAs double‐heterostructure room‐temperature lasers grown by metalorganic chemical vapor deposition , 1977 .

[86]  C. R. Doerr,et al.  Monolithic InP Photonic Integrated Circuits for Transmitting or Receiving Information with Augmented Fidelity or Spectral Efficiency , 2010 .

[87]  K. Kasaya,et al.  Low-switching-voltage InGaAsP/InP waveguide interferometric modulator for integrated optics , 1989, IEEE Photonics Technology Letters.

[88]  Robert Halir,et al.  First monolithic InP-based 90°-hybrid OEIC comprising balanced detectors for 100GE coherent frontends , 2009, 2009 IEEE International Conference on Indium Phosphide & Related Materials.