Adaptive Faceted Search on Twitter

Social tagging represents an innovative and powerful mechanism introduced by social Web: it shifts the task of classifying resources from a reduced set of knowledge engineers to the wide set of Web users. Tags generate folksonomies; in the current popular social tagging systems (such as delicious or Bibsonomy), they are difficult to manage, modify, and visualize in dynamic and personalized ways. The aim of this paper is to describe Folkview, an innovative way to conceive a folksonomy in terms of a multi-agent system. Folkview is able to support specific modular tools for personalizing customized and dynamic visualization features allowing users to simply update, manage and modify a folksonomy.

[1]  A. Osborn Applied imagination : principles and procedures of creative problem-solving , 1957 .

[2]  Shawn R. Wolfe,et al.  A Bookmarking Service for Organizing and Sharing URLs , 1997, Comput. Networks.

[3]  James Rucker,et al.  Siteseer: personalized navigation for the Web , 1997, CACM.

[4]  Edward Y. Chang,et al.  PowerBookmarks: a system for personalizable Web information organization, sharing, and management , 1999, SIGMOD '99.

[5]  Abraham Kandel,et al.  Classification of Web documents using a graph model , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[6]  Uday S. Murthy,et al.  Divergent and Convergent Idea Generation in Teams: A Comparison of Computer-Mediated and Face-to-Face Communication , 2004 .

[7]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Indranil Gupta,et al.  Leveraging Social-Network Infrastructure to Improve Peer-to-Peer Overlay Performance: Results from Orkut , 2005, ArXiv.

[9]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[10]  J. Pissarra,et al.  Idea generation through computer‐mediated communication: the effects of anonymity , 2005 .

[11]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[12]  Eyal Oren,et al.  Extending Faceted Navigation for RDF Data , 2006, SEMWEB.

[13]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[14]  Wolfgang Stroebe,et al.  How the Group Affects the Mind: A Cognitive Model of Idea Generation in Groups , 2006, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[15]  Shinichi Honiden,et al.  Web Page Recommender System based on Folksonomy Mining for ITNG ’06 Submissions , 2006, Third International Conference on Information Technology: New Generations (ITNG'06).

[16]  Shuchuan Lo,et al.  WMR--A Graph-Based Algorithm for Friend Recommendation , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).

[17]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[18]  Andreas Hotho,et al.  Tag Recommendations in Folksonomies , 2007, LWA.

[19]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[20]  Mor Naaman,et al.  Why we tag: motivations for annotation in mobile and online media , 2007, CHI.

[21]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[22]  Robert O. Briggs,et al.  Bounded Ideation Theory: A New Model of the Relationship Between Ideaquantity and Idea-quality during Ideation , 2007, 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

[23]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[24]  B. Miri,et al.  Purposely Teaching for the Promotion of Higher-order Thinking Skills: A Case of Critical Thinking , 2007 .

[25]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[26]  Yi Zhang,et al.  Personalized interactive faceted search , 2008, WWW.

[27]  Soe-Tsyr Yuan,et al.  Semantic Ideation Learning for Agent-Based E-Brainstorming , 2008, IEEE Transactions on Knowledge and Data Engineering.

[28]  Balachander Krishnamurthy,et al.  A few chirps about twitter , 2008, WOSN '08.

[29]  Robert O. Briggs,et al.  On The Relationship Between Idea-Quantity and Idea-Quality During Ideation , 2008 .

[30]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[31]  Ingmar Weber,et al.  Personalized, interactive tag recommendation for flickr , 2008, RecSys '08.

[32]  Kilian Q. Weinberger,et al.  Resolving tag ambiguity , 2008, ACM Multimedia.

[33]  Barbara S. Chaparro,et al.  Trick or Tweet: How Usable is Twitter for First-Time Users? , 2009 .

[34]  Nigel Shadbolt,et al.  Contextualising Tags in Collaborative Tagging Systems , 2009 .

[35]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[36]  S. Herring,et al.  Beyond Microblogging: Conversation and Collaboration via Twitter , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[37]  Ido Guy,et al.  Do you know?: recommending people to invite into your social network , 2009, IUI.

[38]  Barry Smyth,et al.  Using twitter to recommend real-time topical news , 2009, RecSys '09.

[39]  Michael J. Muller,et al.  Make new friends, but keep the old: recommending people on social networking sites , 2009, CHI.

[40]  Daniel Dajun Zeng,et al.  A Novel Recommendation Framework for Micro-Blogging Based on Information Diffusion , 2009, WITS 2009.

[41]  Ciro Cattuto,et al.  Evaluating similarity measures for emergent semantics of social tagging , 2009, WWW '09.

[42]  Leysia Palen,et al.  Twitter adoption and use in mass convergence and emergency events , 2009 .

[43]  Mary Beth Rosson,et al.  How and why people Twitter: the role that micro-blogging plays in informal communication at work , 2009, GROUP.

[44]  John Riedl,et al.  Tagommenders: connecting users to items through tags , 2009, WWW '09.

[45]  Oscar Corcho,et al.  Preliminary Results in Tag Disambiguation using DBpedia , 2009 .

[46]  Enrico Motta,et al.  Improving Folksonomies Using Formal Knowledge: A Case Study on Search , 2009, ASWC.

[47]  Norman May,et al.  An Idea Ontology for Innovation Management , 2009, Int. J. Semantic Web Inf. Syst..

[48]  Bamshad Mobasher,et al.  The impact of ambiguity and redundancy on tag recommendation in folksonomies , 2009, RecSys '09.

[49]  X. Amatriain,et al.  Weighted Content Based Methods for Recommending Connections in Online Social Networks , 2010 .

[50]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[51]  Shyhtsun Felix Wu,et al.  Measuring message propagation and social influence on Twitter.com , 2010, Int. J. Commun. Networks Distributed Syst..

[52]  Michael S. Bernstein,et al.  A Torrent of Tweets: Managing Information Overload in Online Social Streams , 2010 .

[53]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[54]  Adam Rae,et al.  Improving tag recommendation using social networks , 2010, RIAO.

[55]  John G. Breslin,et al.  Argumentation 3.0: how Semantic Web technologies can improve argumentation modeling in Web 2.0 environments , 2010, COMMA.

[56]  Danah Boyd,et al.  Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter , 2010, 2010 43rd Hawaii International Conference on System Sciences.

[57]  Karl T. Ulrich,et al.  Idea Generation and the Quality of the Best Idea , 2009, Manag. Sci..

[58]  Evangelos E. Milios,et al.  Learning in efficient tag recommendation , 2010, RecSys '10.

[59]  Michael S. Bernstein,et al.  Short and tweet: experiments on recommending content from information streams , 2010, CHI.

[60]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[61]  Barry Smyth,et al.  On the real-time web as a source of recommendation knowledge , 2010, RecSys '10.

[62]  Alejandro Bellogín,et al.  Content-based recommendation in social tagging systems , 2010, RecSys '10.

[63]  Hiroyuki Kitagawa,et al.  TURank: Twitter User Ranking Based on User-Tweet Graph Analysis , 2010, WISE.

[64]  Antonina Dattolo,et al.  The role of tags for recommendation: A survey , 2010, 3rd International Conference on Human System Interaction.

[65]  John Hannon,et al.  Recommending twitter users to follow using content and collaborative filtering approaches , 2010, RecSys '10.

[66]  Ioannis Konstas,et al.  Categorising social tags to improve folksonomy-based recommendations , 2011, J. Web Semant..

[67]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[68]  Ed H. Chi,et al.  Speak little and well: recommending conversations in online social streams , 2011, CHI.

[69]  Bernardo A. Huberman,et al.  Trends in Social Media: Persistence and Decay , 2011, ICWSM.

[70]  Abraham Kandel,et al.  DegExt - A Language-Independent Graph-Based Keyphrase Extractor , 2011, AWIC.

[71]  Ilknur Celik,et al.  Learning Semantic Relationships between Entities in Twitter , 2011, ICWE.

[72]  Qi Gao,et al.  Analyzing user modeling on twitter for personalized news recommendations , 2011, UMAP'11.

[73]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[74]  Mehrbakhsh Nilashi,et al.  Collaborative filtering recommender systems , 2013 .