Detectors for AO wavefront sensing

The detector is a critical component of any Adaptive Optics WaveFront Sensing (AO WFS) system. The required performance combination of fast frame rate, high quantum efficiency, low read noise and dark signal, number and size (24-50 μm) of pixels pushes detector technology to the edge such that in many cases custom detector developments are required. This paper examines the roadmap of optical and infrared detectors by reviewing; detectors that are currently available and/or are in use in current instruments, detectors that are under development and will be used in future instruments on existing telescopes, and the requirements and status of new detectors whose development are critical for the success of the next generation of extremely large telescopes (E-ELT, GMT, and TMT). In addition, the paper will report on the AO WFS detector development and testing programs currently under way at ESO.

[1]  Tom Elliott,et al.  Fundamental performance differences between CMOS and CCD imagers: Part 1 , 2006, SPIE Astronomical Telescopes + Instrumentation.

[2]  Leander Mehrgan,et al.  NGC FRONT-END FOR CCDS AND AO APPLICATIONS , 2006 .

[3]  T. Fusco,et al.  Zero Noise Wavefront Sensor Development within the Opticon European Network , 2006 .

[4]  Heike Soltau,et al.  Results of a pnCCD detector system for high-speed optical imaging , 2008, Astronomical Telescopes + Instrumentation.

[5]  Ray Bell,et al.  The LLCCD: low-light imaging without the need for an intensifier , 2001, IS&T/SPIE Electronic Imaging.

[6]  Eric Stadler,et al.  Thermal modeling of cooled instrument: from the WIRCam IR camera to CCD Peltier cooled compact packages , 2006, SPIE Astronomical Telescopes + Instrumentation.

[7]  James W. Beletic,et al.  The Ultimate CCD for Laser Guide Star Wavefront Sensing on Extremely Large Telescopes , 2005 .

[8]  P. De Moor,et al.  Radiometric Performance Enhancement of Hybrid and Monolithic Backside Illuminated CMOS APS for Space-borne Imaging , 2007 .

[9]  Boyd Fowler,et al.  High Performance CMOS Image Sensor for Low Light Imaging , 2007 .

[10]  Gert Finger,et al.  Performance and evaluation of the infrared AO sensor CALICO , 2008, Astronomical Telescopes + Instrumentation.

[11]  M. Uslenghi,et al.  Measurement of lateral charge diffusion in thick, fully depleted, back-illuminated CCDs , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[12]  Satoru Adachi,et al.  A 200-µV/e- CMOS Image Sensor With 100-ke- Full Well Capacity , 2008, IEEE J. Solid State Circuits.

[13]  Ian Powell,et al.  NFIRAOS: TMT narrow field near-infrared facility adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[14]  J. Rothman,et al.  High performance characteristics in pin MW HgCdTe e-APDs , 2007, SPIE Defense + Commercial Sensing.

[15]  Jerry Nelson,et al.  The design and optimization of detectors for adaptive optics wavefront sensing , 2006, SPIE Astronomical Telescopes + Instrumentation.

[16]  Roberto Roncella,et al.  Single-photon avalanche diode arrays for fast transients and adaptive optics , 2006, IEEE Transactions on Instrumentation and Measurement.

[17]  R. Reich,et al.  An integrated electronic shutter for back-illuminated charge-coupled devices , 1991 .

[18]  Thierry Fusco,et al.  A Dedicated L3Vision CCD for Adaptive Optics Applications , 2006 .

[19]  James W. Beletic,et al.  A CCD-based Curvature Wavefront Sensor for Adaptive Optics in Astronomy , 2004 .

[20]  Markus Loose,et al.  Teledyne Imaging Sensors: infrared imaging technologies for astronomy and civil space , 2008, Astronomical Telescopes + Instrumentation.

[21]  A Tosi,et al.  Fully-integrated CMOS single photon counter. , 2007, Optics express.

[22]  Bahaa E. A. Saleh,et al.  Generalized excess noise factor for avalanche photodiodes of arbitrary structure , 1990 .

[23]  Philippe Feautrier,et al.  A DEDICATED CONTROLLER FOR ADAPTIVE OPTICS L3CCD DEVELOPMENTS , 2006 .

[24]  Thierry Fusco,et al.  Custom CCD for adaptive optics applications , 2006, SPIE Astronomical Telescopes + Instrumentation.

[25]  D. Young,et al.  Geiger-mode quad-cell array for adaptive optics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[26]  T. Fusco,et al.  Study of optimal wavefront sensing with elongated laser guide stars , 2008 .

[27]  Hsiharng Yang,et al.  (Optical Engineering,46(4):043402.1-043402.8)Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts , 2007 .

[28]  J. Adkisson,et al.  CMOS Imager with Copper Wiring and Lightpipe , 2006, 2006 International Electron Devices Meeting.

[29]  James T. Andrews,et al.  CMOS minimal array , 2006, SPIE Optics + Photonics.

[30]  Dun-Nian Yaung,et al.  High Sensitivity of Dielectric films Structure for Advanced CMOS Image Sensor Technology , 2007 .

[31]  James W. Beletic,et al.  A new CCD designed for curvature wavefront sensing , 2000 .

[32]  James Andrews,et al.  Fundamental performance differences between CMOS and CCD imagers: Part II , 2007, SPIE Optical Engineering + Applications.

[33]  R. M. Osgood,et al.  Lincoln Laboratory high-speed solid-state imager technology , 2007, International Congress on High-Speed Imaging and Photonics.