Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree
暂无分享,去创建一个
[1] Franz-Jürgen Delvos,et al. Multivariate Boolean Trapezoidal Rules , 1994 .
[2] M. V. Noskov. Cubature formulae for the approximate integration of functions of three variables , 1990 .
[3] Alan Genz,et al. Fully symmetric interpolatory rules for multiple integrals , 1986 .
[4] S. B. Stechkin. Approximation of periodic functions , 1974 .
[5] N. Temirgaliev. APPLICATION OF DIVISOR THEORY TO THE NUMERICAL INTEGRATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1991 .
[6] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[7] Ronald Cools,et al. Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.
[8] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[9] I. P. Mysovskikh. Cubature formulas that are exact for trigonometric polynomials , 1998 .
[10] K. Ritter,et al. The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .
[11] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[12] Vladimir Temlyakov,et al. ON A WAY OF OBTAINING LOWER ESTIMATES FOR THE ERRORS OF QUADRATURE FORMULAS , 1992 .
[13] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[14] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[15] Karin Frank,et al. Computing Discrepancies Related to Spaces of Smooth Periodic Functions , 1998 .
[16] T. Rella. Lehrbuch der Kombinatorik , 1929 .
[17] Ian H. Sloan,et al. Cubature Rules of Prescribed Merit , 1997 .
[18] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[19] Ronald Cools,et al. Minimal cubature formulae of trigonometric degree , 1996, Math. Comput..