Duffing–van der Pol oscillator type dynamics in Murali–Lakshmanan–Chua (MLC) circuit

Abstract We have constructed a simple second-order dissipative nonautonomous circuit exhibiting ordered and chaotic behaviour. This circuit is the well known Murali–Lakshmanan–Chua(MLC) circuit but with diode based nonlinear element. For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractors. It is interesting to note that depending upon the circuit parameters the circuit shows both period doubling route to chaos and quasiperiodic route to chaos. In our study we have constructed two-parameter bifurcation diagrams in the forcing amplitude–frequency plane, one parameter bifurcation diagrams, Lyapunov exponents, 0–1 test and phase portrait. The performance of the circuit is investigated by means of laboratory experiments, numerical integration of appropriate mathematical model and explicit analytic studies.

[1]  Paul Manneville,et al.  Different ways to turbulence in dissipative dynamical systems , 1980 .

[2]  P. Linsay Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator , 1981 .

[3]  Xilin Fu,et al.  Chatter dynamic analysis for Van der Pol Equation with impulsive effect via the theory of flow switchability , 2014, Commun. Nonlinear Sci. Numer. Simul..

[4]  Leon O. Chua,et al.  Simplest chaotic nonautonomous circuit , 1984 .

[5]  Krishnamurthy Murali,et al.  TRANSITION FROM QUASIPERIODICITY TO CHAOS AND DEVIL'S STAIRCASE STRUCTURES OF THE DRIVEN CHUA'S CIRCUIT , 1992 .

[6]  Leon O. Chua,et al.  The devil's staircase - The electrical engineer's fractal , 1989 .

[7]  L. Chua,et al.  The simplest dissipative nonautonomous chaotic circuit , 1994 .

[8]  K. Thamilmaran,et al.  Classification of bifurcations and Chaos in Chua's Circuit with Effect of Different Periodic Forces , 2009, Int. J. Bifurc. Chaos.

[9]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[10]  Norio Akamatsu,et al.  Chaotically transitional phenomena in the forced negative-resistance oscillator , 1980 .

[11]  D. V. Senthilkumar,et al.  Strong Chaos in a Forced Negative Conductance Series LCR Circuit , 2005, Int. J. Bifurc. Chaos.

[12]  Rajarshi Roy,et al.  OPTICAL COMMUNICATION WITH CHAOTIC WAVEFORMS , 1998 .

[13]  Kazuyuki Aihara,et al.  Analysis of Torus breakdown into Chaos in a Constraint Duffing van der Pol oscillator , 2008, Int. J. Bifurc. Chaos.

[14]  Tamás Roska,et al.  Anyone Can Build Chua's Circuit: Hands-on-Experience with Chaos Theory for High School Students , 2009, Int. J. Bifurc. Chaos.

[15]  Georg A. Gottwald,et al.  On the validity of the 0–1 test for chaos , 2009, 0906.1415.

[16]  L. Chua,et al.  Devil's staircase route to chaos in a non-linear circuit , 1986 .

[17]  J. G. Lacy A SIMPLE PIECEWISE-LINEAR NON-AUTONOMOUS CIRCUIT WITH CHAOTIC BEHAVIOR , 1996 .

[18]  William L. Ditto,et al.  A simple nonlinear dynamical computing device , 2009 .

[19]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[20]  M Lakshmanan,et al.  Applicability of 0-1 test for strange nonchaotic attractors. , 2013, Chaos.

[21]  Luigi Fortuna,et al.  The Jerk Dynamics of Chua's Circuit , 2014, Int. J. Bifurc. Chaos.

[22]  Eleonora Bilotta,et al.  Chaos at School: Chua's Circuit for Students in Junior and Senior High School , 2010, Int. J. Bifurc. Chaos.

[23]  Julien Clinton Sprott,et al.  Simple chaotic systems and circuits , 2000 .

[24]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[25]  K. Thamilmaran,et al.  Classification of bifurcations and Routes to Chaos in a Variant of Murali-lakshmanan-chua Circuit , 2002, Int. J. Bifurc. Chaos.

[26]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[27]  Sudeshna Sinha,et al.  A noise-assisted reprogrammable nanomechanical logic gate. , 2010, Nano letters.

[28]  L. Chua,et al.  Chaos via torus breakdown , 1987 .

[29]  M. Hasler,et al.  Transition to chaos in a simple nonlinear circuit driven by a sinusoidal voltage source , 1983 .

[30]  S. Mori,et al.  Chaos via torus breakdown in a piecewise-linear forced van der Pol oscillator with a diode , 1991 .

[31]  Leon O. Chua,et al.  BIFURCATION AND CHAOS IN THE SIMPLEST DISSIPATIVE NON-AUTONOMOUS CIRCUIT , 1994 .

[32]  Jose Antonio Coarasa Perez,et al.  Evidence for universal chaotic behavior of a driven nonlinear oscillator , 1982 .

[33]  J. Keizer Reversibility, work, and heat at nonequilibrium steady states , 1984 .

[34]  K Thamilmaran,et al.  Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  津田 一郎,et al.  K. Kaneko: Collapse of Tori and Genesis of Chaos in Dissipative Systems, World Scientific, Singapore, 1986, 264ページ, 24×16cm, US24.00. , 1987 .

[36]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[37]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[38]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[39]  Kehui Sun,et al.  Periodically Forced Chaotic System with Signum Nonlinearity , 2010, Int. J. Bifurc. Chaos.

[40]  K. Aihara,et al.  Manipulating potential wells in Logical Stochastic Resonance to obtain XOR logic , 2012 .

[41]  K. Thamilmaran,et al.  Rich Variety of bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua Circuit , 2000, Int. J. Bifurc. Chaos.