Duffing–van der Pol oscillator type dynamics in Murali–Lakshmanan–Chua (MLC) circuit
暂无分享,去创建一个
I. Raja Mohamed | V. K. Chandrasekar | A. Venkatesan | K. Srinivasan | K. Srinivasan | A. Venkatesan | I. Mohamed | I. R. Mohamed
[1] Paul Manneville,et al. Different ways to turbulence in dissipative dynamical systems , 1980 .
[2] P. Linsay. Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator , 1981 .
[3] Xilin Fu,et al. Chatter dynamic analysis for Van der Pol Equation with impulsive effect via the theory of flow switchability , 2014, Commun. Nonlinear Sci. Numer. Simul..
[4] Leon O. Chua,et al. Simplest chaotic nonautonomous circuit , 1984 .
[5] Krishnamurthy Murali,et al. TRANSITION FROM QUASIPERIODICITY TO CHAOS AND DEVIL'S STAIRCASE STRUCTURES OF THE DRIVEN CHUA'S CIRCUIT , 1992 .
[6] Leon O. Chua,et al. The devil's staircase - The electrical engineer's fractal , 1989 .
[7] L. Chua,et al. The simplest dissipative nonautonomous chaotic circuit , 1994 .
[8] K. Thamilmaran,et al. Classification of bifurcations and Chaos in Chua's Circuit with Effect of Different Periodic Forces , 2009, Int. J. Bifurc. Chaos.
[9] Julien Clinton Sprott,et al. Simple chaotic flows with a line equilibrium , 2013 .
[10] Norio Akamatsu,et al. Chaotically transitional phenomena in the forced negative-resistance oscillator , 1980 .
[11] D. V. Senthilkumar,et al. Strong Chaos in a Forced Negative Conductance Series LCR Circuit , 2005, Int. J. Bifurc. Chaos.
[12] Rajarshi Roy,et al. OPTICAL COMMUNICATION WITH CHAOTIC WAVEFORMS , 1998 .
[13] Kazuyuki Aihara,et al. Analysis of Torus breakdown into Chaos in a Constraint Duffing van der Pol oscillator , 2008, Int. J. Bifurc. Chaos.
[14] Tamás Roska,et al. Anyone Can Build Chua's Circuit: Hands-on-Experience with Chaos Theory for High School Students , 2009, Int. J. Bifurc. Chaos.
[15] Georg A. Gottwald,et al. On the validity of the 0–1 test for chaos , 2009, 0906.1415.
[16] L. Chua,et al. Devil's staircase route to chaos in a non-linear circuit , 1986 .
[17] J. G. Lacy. A SIMPLE PIECEWISE-LINEAR NON-AUTONOMOUS CIRCUIT WITH CHAOTIC BEHAVIOR , 1996 .
[18] William L. Ditto,et al. A simple nonlinear dynamical computing device , 2009 .
[19] M. Lakshmanan,et al. Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .
[20] M Lakshmanan,et al. Applicability of 0-1 test for strange nonchaotic attractors. , 2013, Chaos.
[21] Luigi Fortuna,et al. The Jerk Dynamics of Chua's Circuit , 2014, Int. J. Bifurc. Chaos.
[22] Eleonora Bilotta,et al. Chaos at School: Chua's Circuit for Students in Junior and Senior High School , 2010, Int. J. Bifurc. Chaos.
[23] Julien Clinton Sprott,et al. Simple chaotic systems and circuits , 2000 .
[24] J. Gallas,et al. Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.
[25] K. Thamilmaran,et al. Classification of bifurcations and Routes to Chaos in a Variant of Murali-lakshmanan-chua Circuit , 2002, Int. J. Bifurc. Chaos.
[26] Leon O. Chua,et al. Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.
[27] Sudeshna Sinha,et al. A noise-assisted reprogrammable nanomechanical logic gate. , 2010, Nano letters.
[28] L. Chua,et al. Chaos via torus breakdown , 1987 .
[29] M. Hasler,et al. Transition to chaos in a simple nonlinear circuit driven by a sinusoidal voltage source , 1983 .
[30] S. Mori,et al. Chaos via torus breakdown in a piecewise-linear forced van der Pol oscillator with a diode , 1991 .
[31] Leon O. Chua,et al. BIFURCATION AND CHAOS IN THE SIMPLEST DISSIPATIVE NON-AUTONOMOUS CIRCUIT , 1994 .
[32] Jose Antonio Coarasa Perez,et al. Evidence for universal chaotic behavior of a driven nonlinear oscillator , 1982 .
[33] J. Keizer. Reversibility, work, and heat at nonequilibrium steady states , 1984 .
[34] K Thamilmaran,et al. Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[35] 津田 一郎,et al. K. Kaneko: Collapse of Tori and Genesis of Chaos in Dissipative Systems, World Scientific, Singapore, 1986, 264ページ, 24×16cm, US24.00. , 1987 .
[36] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[37] J. Sprott. Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .
[38] Guanrong Chen,et al. Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .
[39] Kehui Sun,et al. Periodically Forced Chaotic System with Signum Nonlinearity , 2010, Int. J. Bifurc. Chaos.
[40] K. Aihara,et al. Manipulating potential wells in Logical Stochastic Resonance to obtain XOR logic , 2012 .
[41] K. Thamilmaran,et al. Rich Variety of bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua Circuit , 2000, Int. J. Bifurc. Chaos.