Glioblastoma: new therapeutic strategies to address cellular and genomic complexity

Glioblastoma (GBM) is the most invasive and devastating primary brain tumor with a median overall survival rate about 18 months with aggressive multimodality therapy. Its unique characteristics of heterogeneity, invasion, clonal populations maintaining stem cell-like cells and recurrence, have limited responses to a variety of therapeutic approaches, and have made GBM the most difficult brain cancer to treat. A great effort and progress has been made to reveal promising molecular mechanisms to target therapeutically. Especially with the emerging of new technologies, the mechanisms underlying the pathology of GBM are becoming more clear. The purpose of this review is to summarize the current knowledge of molecular mechanisms of GBM and highlight the novel strategies and concepts for the treatment of GBM.

[1]  F. Lang,et al.  Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. , 2017, Cancer research.

[2]  J. Moffat,et al.  Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma , 2017, Annals of oncology : official journal of the European Society for Medical Oncology.

[3]  L. Grumolato,et al.  CRISPR/Cas9 editing of the genome for cancer modeling. , 2017, Methods.

[4]  D. Aquino,et al.  MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives , 2017, Journal of immunology research.

[5]  K. Kurian,et al.  Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma , 2017, Front. Oncol..

[6]  S. Thust,et al.  Advanced MRI Techniques in the Monitoring of Treatment of Gliomas , 2017, Current Treatment Options in Neurology.

[7]  G. Vlahović,et al.  Immunotherapy approaches in the treatment of malignant brain tumors , 2017, Cancer.

[8]  Frank Buchholz,et al.  Inactivation of Cancer Mutations Utilizing CRISPR/Cas9. , 2017, Journal of the National Cancer Institute.

[9]  S. Ciafrè,et al.  MicroRNAs as Multifaceted Players in Glioblastoma Multiforme. , 2017, International review of cell and molecular biology.

[10]  M. Sena-Esteves,et al.  Systemic AAV9-IFNβ gene delivery treats highly invasive glioblastoma. , 2016, Neuro-oncology.

[11]  F. Kruyt,et al.  The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. , 2016, Biochemical pharmacology.

[12]  C. Kenific,et al.  Autophagy in adhesion and migration , 2016, Journal of Cell Science.

[13]  M. Fakhoury Drug delivery approaches for the treatment of glioblastoma multiforme , 2016, Artificial cells, nanomedicine, and biotechnology.

[14]  Sathish Kumar Mungamuri,et al.  CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations. , 2016, Molecular cell.

[15]  A. Bassuk,et al.  CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa. , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[16]  Erwin G. Van Meir,et al.  A role for activated Cdc42 in glioblastoma multiforme invasion , 2016, Oncotarget.

[17]  T. Taxter,et al.  FGFR3-TACC3 fusion in solid tumors: mini review , 2016, Oncotarget.

[18]  X. Morandi,et al.  Signaling the Unfolded Protein Response in primary brain cancers , 2016, Brain Research.

[19]  P. Mischel,et al.  Cancer metabolism as a central driving force of glioma pathogenesis , 2016, Brain Tumor Pathology.

[20]  M. Verma,et al.  MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics , 2016, Cancer medicine.

[21]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[22]  J. Godlewski,et al.  The role of octamer binding transcription factors in glioblastoma multiforme. , 2016, Biochimica et biophysica acta.

[23]  Ji Luo CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery. , 2016, Trends in cancer.

[24]  E. Fraenkel,et al.  Network Modeling Identifies Patient-specific Pathways in Glioblastoma , 2016, Scientific Reports.

[25]  F. A. Khan,et al.  CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases , 2016, Oncotarget.

[26]  G. Leanza,et al.  Emx2 as a novel tool to suppress glioblastoma , 2016, Oncotarget.

[27]  Yingying Liu,et al.  MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/β-catenin pathway , 2016, Oncotarget.

[28]  Xiao-Jiang Li,et al.  CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases , 2016, Front. Mol. Neurosci..

[29]  C. Palazzo,et al.  Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[30]  Yongting Wang,et al.  In vivo gene therapy potentials of CRISPR-Cas9 , 2016, Gene Therapy.

[31]  Xia Li,et al.  Dissecting dysfunctional crosstalk pathways regulated by miRNAs during glioma progression , 2016, Oncotarget.

[32]  Liu Cao,et al.  PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma , 2016, Oncotarget.

[33]  S. Brammer,et al.  The Practical Consideration of Poliovirus as an Oncolytic Virotherapy , 2016, American journal of virology.

[34]  S. Razavi,et al.  Immune Evasion Strategies of Glioblastoma , 2016, Front. Surg..

[35]  K. McDonald,et al.  The challenges associated with molecular targeted therapies for glioblastoma , 2016, Journal of Neuro-Oncology.

[36]  A. N. Meyer,et al.  Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by Tyrosine Phosphorylation , 2016, Molecular Cancer Research.

[37]  D. Nam,et al.  WNT signaling in glioblastoma and therapeutic opportunities , 2016, Laboratory Investigation.

[38]  Roh-Eul Yoo,et al.  Recent Application of Advanced MR Imaging to Predict Pseudoprogression in High-grade Glioma Patients , 2015, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[39]  R. Glass,et al.  Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. , 2015, Neuro-oncology.

[40]  C. Miller,et al.  Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma , 2016, Nature Communications.

[41]  Tyler E. Miller,et al.  An epigenetic gateway to brain tumor cell identity , 2015, Nature Neuroscience.

[42]  M. Gilbert,et al.  Advances in the treatment of newly diagnosed glioblastoma , 2015, BMC Medicine.

[43]  Michael C. Brown,et al.  Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. , 2015, Current opinion in virology.

[44]  Timothy C Ryken,et al.  Toward precision medicine in glioblastoma: the promise and the challenges. , 2015, Neuro-oncology.

[45]  A. Órfão,et al.  Molecular and Genomic Alterations in Glioblastoma Multiforme. , 2015, The American journal of pathology.

[46]  G. Finocchiaro,et al.  Novel mechanisms and approaches in immunotherapy for brain tumors. , 2015, Discovery medicine.

[47]  A. Brenner,et al.  VB-111: a novel anti-vascular therapeutic for glioblastoma multiforme , 2015, Journal of Neuro-Oncology.

[48]  Volker Hovestadt,et al.  Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling , 2015, Nature Communications.

[49]  Chibo Hong,et al.  The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer , 2015, Science.

[50]  A. Friedman,et al.  Oncolytic polio/rhinovirus recombinant (PVSRIPO) against recurrent glioblastoma (GBM): Optimal dose determination. , 2015 .

[51]  T. Wurdinger,et al.  Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. , 2015, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[52]  Jacob S. Young,et al.  Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. , 2015, Neuro-oncology.

[53]  Na Li,et al.  Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma , 2015, Science Translational Medicine.

[54]  Qi-En Wang,et al.  Review Article TGF-β signaling and its targeting for glioma treatment , 2015 .

[55]  T. Seyfried,et al.  Metabolic therapy: a new paradigm for managing malignant brain cancer. , 2015, Cancer letters.

[56]  A. Iavarone,et al.  Detection, Characterization, and Inhibition of FGFR–TACC Fusions in IDH Wild-type Glioma , 2015, Clinical Cancer Research.

[57]  K. Aldape,et al.  FIRST-IN-HUMAN PHASE I CLINICAL TRIAL OF ONCOLYTIC DELTA-24-RGD (DNX-2401) WITH BIOLOGICAL ENDPOINTS: IMPLICATIONS FOR VIRO- IMMUNOTHERAPY , 2014 .

[58]  W. Yung,et al.  Delta-24-RGD Oncolytic Adenovirus Elicits Anti-Glioma Immunity in an Immunocompetent Mouse Model , 2014, PloS one.

[59]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[60]  N. Shah,et al.  Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data , 2013, BMC Genomics.

[61]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[62]  B. Kamińska,et al.  Is Glioblastoma an Epigenetic Malignancy? , 2013, Cancers.

[63]  Laura M. Epple,et al.  Induction of the Unfolded Protein Response Drives Enhanced Metabolism and Chemoresistance in Glioma Cells , 2013, PloS one.

[64]  Raul Rabadan,et al.  The integrated landscape of driver genomic alterations in glioblastoma , 2013, Nature Genetics.

[65]  J. Phillips,et al.  G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells , 2013, Journal of Clinical Neuroscience.

[66]  A. Sami,et al.  Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding , 2013, Tumor Biology.

[67]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[68]  V. Balasubramaniyan,et al.  TGF-β as a therapeutic target in high grade gliomas - promises and challenges. , 2013, Biochemical pharmacology.

[69]  M. Nykter,et al.  The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. , 2013, The Journal of clinical investigation.

[70]  B. Kamińska,et al.  TGF beta signaling and its role in glioma pathogenesis. , 2013, Advances in experimental medicine and biology.

[71]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[72]  Hans Clevers,et al.  Wnt/β-Catenin Signaling and Disease , 2012, Cell.

[73]  A. N. van den Pol,et al.  Oncolytic Virus Therapy for Glioblastoma Multiforme: Concepts and Candidates , 2012, Cancer journal.

[74]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth after chemotherapy , 2012 .

[75]  W. Mason,et al.  A phase II study of the Ras-MAPK signaling pathway inhibitor TLN-4601 in patients with glioblastoma at first progression , 2012, Journal of Neuro-Oncology.

[76]  E. Dobrikova,et al.  Oncolytic poliovirus against malignant glioma. , 2011, Future virology.

[77]  I. Yang,et al.  Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. , 2011, Journal of neurosurgery.

[78]  Mitsutoshi Nakada,et al.  Aberrant Signaling Pathways in Glioma , 2011, Cancers.

[79]  Stephan Frank,et al.  MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. , 2011, Cancer research.

[80]  H. Gach,et al.  Akt signaling is required for glioblastoma maintenance in vivo. , 2011, American journal of cancer research.

[81]  Yi Zheng,et al.  Signaling Role of Cdc42 in Regulating Mammalian Physiology* , 2010, The Journal of Biological Chemistry.

[82]  J. Phillips,et al.  EMR-3: a potential mediator of invasive phenotypic variation in glioblastoma and novel therapeutic target , 2010, Neuroreport.

[83]  I. Yang,et al.  CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival , 2010, Journal of Clinical Neuroscience.

[84]  M. Esteller,et al.  Epigenetic modifications and human disease , 2010, Nature Biotechnology.

[85]  Serban Nacu,et al.  A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. , 2010, Cancer cell.

[86]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[87]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[88]  I. Germano,et al.  In vivo gene delivery by embryonic-stem-cell-derived astrocytes for malignant gliomas. , 2009, Neuro-oncology.

[89]  F. Ducray,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[90]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[91]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[92]  J. Rich,et al.  Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[93]  Thomas C. Chen,et al.  The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. , 2007, Cancer research.

[94]  F. Zanella,et al.  Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. , 2006, The Lancet. Oncology.

[95]  B. Williams,et al.  Essential role for Ras signaling in glioblastoma maintenance. , 2005, Cancer research.

[96]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[97]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[98]  R. Nusse,et al.  The Wnt signaling pathway in development and disease. , 2004, Annual review of cell and developmental biology.

[99]  A. Feinberg,et al.  The history of cancer epigenetics , 2004, Nature Reviews Cancer.

[100]  G. Fuller,et al.  Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. , 2003, Journal of the National Cancer Institute.

[101]  S. Gordon,et al.  Human Epidermal Growth Factor (EGF) Module-containing Mucin-like Hormone Receptor 3 Is a New Member of the EGF-TM7 Family That Recognizes a Ligand on Human Macrophages and Activated Neutrophils* , 2001, The Journal of Biological Chemistry.