Feasibility and performance of methods based on statistical signal processing to study atrial fibrillation
暂无分享,去创建一个
J.J. Rieta | D. Moratal | C. Sanchez | C. Vaya | J. J. Rieta | D. Moratal | C. Vayá | C. Sánchez
[1] V. Fuster,et al. ACC/AHA/ESC Guidelines for the Management of Patients With Atrial Fibrillation: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conference , 2001, Circulation.
[2] D. Moratal-Perez,et al. Bioelectric model of atrial fibrillation: applicability of blind source separation techniques for atrial activity estimation in atrial fibrillation episodes , 2003, Computers in Cardiology, 2003.
[3] Juan Manuel Sánchis Rico. Evaluación de las condiciones del sistema de mezcla en la separación ciega de fuentes de mezcla convolutiva para aplicación de audio , 2004 .
[4] R. Lambert. Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures , 1996 .
[5] Shiro Ikeda,et al. A Method of Blind Separation Based on Temporal Structure of Signals , 1998, ICONIP.
[6] Pcw Piet Sommen,et al. A new blind signal separation algorithm based on second-order statistics , 1998 .
[7] D. B. Heppner,et al. Considerations of quasi-stationarity in electrophysiological systems. , 1967, The Bulletin of mathematical biophysics.
[8] Erkki Oja,et al. Independent Component Analysis , 2001 .
[10] Nobuhiko Kitawaki,et al. A combined approach of array processing and independent component analysis for blind separation of acoustic signals , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).