Estimation of Time-Varying Long Memory Parameter Using Wavelet Method

Stationary long memory processes have been extensively studied over the past decades. When we deal with financial, economic, or environmental data, seasonality and time-varying long-range dependence can often be observed and thus some kind of non-stationarity exists. To take into account this phenomenon, we propose a new class of stochastic processes: locally stationary k-factor Gegenbauer process. We present a procedure to estimate consistently the time-varying parameters by applying discrete wavelet packet transform. The robustness of the algorithm is investigated through a simulation study. And we apply our methods on Nikkei Stock Average 225 (NSA 225) index series.

[1]  Mark J. Jensen Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter , 1997 .

[2]  J. A. González Log-periodogram regression in seasonal/cyclical long memory time series , 1998 .

[3]  Dominique Guegan,et al.  Forecasting with k‐factor Gegenbauer Processes: Theory and Applications , 2001 .

[4]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[5]  Dominique Guegan,et al.  Forecasting electricity spot market prices with a k-factor GIGARCH process , 2007 .

[6]  Joel M. Morris,et al.  Minimum-bandwidth discrete-time wavelets , 1999, Signal Process..

[7]  S. Mallat A wavelet tour of signal processing , 1998 .

[8]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[9]  H. L. Gray,et al.  A k‐Factor GARMA Long‐memory Model , 1998 .

[10]  Mohamed Boutahar,et al.  A Simple Fractionally Integrated Model with a Time-varying Long Memory Parameter dt , 2008 .

[11]  Brandon Whitcher,et al.  Wavelet estimation of a local long memory parameter , 2000 .

[12]  Joseph E. Cavanaugh,et al.  Ch. 3. Locally self-similar processes and their wavelet analysis , 2003 .

[13]  Jan Beran,et al.  Testing for a change of the long-memory parameter , 1996 .

[14]  R. Dahlhaus,et al.  Asymptotic statistical inference for nonstationary processes with evolutionary spectra , 1996 .

[15]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[16]  田中 勝人 D. B. Percival and A. T. Walden: Wavelet Methods for Time Series Analysis, Camb. Ser. Stat. Probab. Math., 4, Cambridge Univ. Press, 2000年,xxvi + 594ページ. , 2009 .

[17]  Brandon J. Whitcher,et al.  Wavelet-Based Estimation for Seasonal Long-Memory Processes , 2004, Technometrics.

[18]  Donald B. Percival,et al.  Exact simulation of Gaussian Time Series from Nonparametric Spectral Estimates with Application to Bootstrapping , 2006, Stat. Comput..

[19]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[20]  EindhovenThe Netherlandswhitcher Wavelet-based Estimation Procedures for Seasonal Long-memory Models , 2000 .

[21]  Y. Tse,et al.  Forecasting the Nikkei spot index with fractional cointegration , 1999 .

[22]  D. Hendry,et al.  Co-Integration and Error Correction : Representation , Estimation , and Testing , 2007 .

[23]  R. Gencay,et al.  An Introduction to Wavelets and Other Filtering Methods in Finance and Economics , 2001 .

[24]  R. Leipus,et al.  A generalized fractionally differencing approach in long-memory modeling , 1995 .

[25]  D. Stephens,et al.  Large-sample properties of the periodogram estimator of seasonally persistent processes , 2004 .

[26]  Zhiping Lu Analysis of stationary and non-stationary long memory processes : estimation, applications and forecast , 2009 .

[27]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .