CdTe solar cells with open-circuit voltage breaking the 1 V barrier

CdTe solar cells have the potential to undercut the costs of electricity generated by other technologies, if the open-circuit voltage can be increased beyond 1 V without significant decreases in current. However, in the past decades, the open-circuit voltage has stagnated at around 800–900 mV. This is lower than in GaAs solar cells, even though GaAs has a smaller bandgap; this is because it is more difficult to achieve simultaneously high hole density and lifetime in II–VI materials than in III–V materials. Here, by doping the CdTe with a Group V element, we report lifetimes in single-crystal CdTe that are nearly radiatively limited and comparable to those in GaAs over a hole density range relevant for solar applications. Furthermore, the deposition on CdTe of nanocrystalline CdS layers that form non-ideal heterointerfaces with 10% lattice mismatch impart no damage to the CdTe surface and show excellent junction transport properties. These results enable the fabrication of CdTe solar cells with open-circuit voltage greater than 1 V. Solar cells based on CdTe are a promising low-cost alternative to mainstream Si devices, but they usually produce voltages below 900 mV. Burst et al. now show that open-circuit voltages greater than 1 V can be achieved by doping the CdTe with a group V element.

[1]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[2]  J. Sites,et al.  Efficiency limitations for wide-band-gap chalcopyrite solar cells , 2005 .

[3]  Enric Bertran,et al.  Optical properties of indium doped CdS thin films , 1988 .

[4]  K. Durose,et al.  A low-cost non-toxic post-growth activation step for CdTe solar cells , 2014, Nature.

[5]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[6]  S. Garner,et al.  14%-efficient flexible CdTe solar cells on ultra-thin glass substrates , 2014 .

[7]  David S. Albin,et al.  Accelerated stress testing and diagnostic analysis of degradation in CdTe solar cells , 2008, Optics + Photonics for Sustainable Energy.

[8]  W. Metzger,et al.  Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing , 2015 .

[9]  L. Kranz,et al.  Tailoring Impurity Distribution in Polycrystalline CdTe Solar Cells for Enhanced Minority Carrier Lifetime , 2014 .

[10]  H. Guthrey,et al.  Recombination by grain-boundary type in CdTe , 2015 .

[11]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[12]  M. Young,et al.  CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe , 2006 .

[13]  D. Levi,et al.  Time-resolved photoluminescence studies of CdTe solar cells , 2003 .

[14]  Suhuai Wei,et al.  Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe , 2014 .

[15]  D. Cahen,et al.  How Polycrystalline Devices Can Outperform Single‐Crystal Ones: Thin Film CdTe/CdS Solar Cells , 2004 .

[16]  Meyer,et al.  Electronic properties of A centers in CdTe: A comparison with experiment. , 1993, Physical review. B, Condensed matter.

[17]  T. Emrick,et al.  Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency , 2014, Science.

[18]  A. Tiwari,et al.  Analysis of Bulk and Interface Phenomena in CdTe/CdS Thin-Film Solar Cells , 2004 .

[19]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[20]  M. Young,et al.  Dependence of carrier lifetime on Cu-contacting temperature and ZnTe:Cu thickness in CdS/CdTe thin film solar cells☆ , 2009 .

[21]  Daniel Abou-Ras,et al.  Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells , 2004 .

[22]  J. Sites,et al.  Copper inclusion and migration from the back contact in CdTe solar cells , 2004 .

[23]  Suhuai Wei,et al.  Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe , 2011 .

[24]  H. Takakura,et al.  Control of conduction band offset in wide-gap Cu(In,Ga)Se solar cells , 2003 .

[25]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[26]  M. Al‐Jassim,et al.  Direct evidence of a buried homojunction in Cu(In,Ga)Se2 solar cells , 2003 .

[27]  S. G. Kumar,et al.  Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects , 2014 .

[28]  S. Nishiwaki,et al.  Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[29]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[30]  M. Young,et al.  Characterizing Recombination in CdTe Solar Cells with Time-Resolved Photoluminescence , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[31]  Mowafak Al-Jassim,et al.  Grain-boundary-enhanced carrier collection in CdTe solar cells. , 2014, Physical review letters.

[32]  A. Fahrenbruch,et al.  Numerical modeling of CIGS and CdTe solar cells: setting the baseline , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[33]  M. Edirisooriya,et al.  Radiative and interfacial recombination in CdTe heterostructures , 2014 .

[34]  Jonathan D. Poplawsky,et al.  Direct Imaging of Cl‐ and Cu‐Induced Short‐Circuit Efficiency Changes in CdTe Solar Cells , 2014 .

[35]  Shiro Nishiwaki,et al.  Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil , 2013, Nature Communications.

[36]  W. Jaegermann,et al.  Interface Engineering of Inorganic Thin‐Film Solar Cells – Materials‐Science Challenges for Advanced Physical Concepts , 2009 .

[37]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[38]  C. Ferekides,et al.  Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation , 2015 .

[39]  Rameshwar Bhargara Properties of Wide Bandgap II-VI Semiconductors , 1995 .

[40]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[41]  I. Sankin,et al.  CdTe Solar Cells at the Threshold to 20% Efficiency , 2013, IEEE Journal of Photovoltaics.

[42]  D. Kuciauskas,et al.  Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. , 2013, Physical review letters.

[43]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[44]  W. Metzger,et al.  The impact of charged grain boundaries on thin-film solar cells and characterization , 2005 .

[45]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[46]  D. Kuciauskas,et al.  Intrinsic surface passivation of CdTe , 2015 .

[47]  Bas A. Korevaar,et al.  Cross‐sectional mapping of hole concentrations as a function of copper treatment in CdTe photo‐voltaic devices , 2015 .

[48]  S. Pennycook,et al.  Physics of grain boundaries in polycrystalline photovoltaic semiconductors , 2015 .

[49]  David S. Albin,et al.  Cu-related recombination in CdS/CdTe solar cells , 2008 .