A Comparison of Algorithms for Learning Hidden Variables in Bayesian Factor Graphs in Reduced Normal Form

Bayesian-directed acyclic discrete-variable graphs are reduced to a simplified normal form made up of only replicator units (or equal constraint units), source, and single-input/single-output blocks. In this framework, the same adaptation algorithm can be applied to all the parametric blocks. We obtain and compare adaptation rules derived from a constrained maximum likelihood formulation and a minimum Kullback-Leibler divergence criterion using Karush-Kuhn-Tucker conditions. The learning algorithms are compared with two other updating equations based on localized decisions and on a variational approximation, respectively. The performance of the various algorithms is verified on synthetic data sets for various architectures. Factor graphs in reduced normal form provide an appealing framework for rapid deployment of Bayesian-directed graphs in the applications.

[1]  Francesco Palmieri,et al.  Window functions obtained from B-S , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Francesco Palmieri Sampling theorem for polynomial interpolation , 1986, IEEE Trans. Acoust. Speech Signal Process..

[3]  Francesco Palmieri A backpropagation algorithm for multilayer hybrid order statistic filters , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[4]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[5]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[6]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[7]  Francesco Palmieri,et al.  Ll-filters-a new class of order statistic filters , 1989, IEEE Trans. Acoust. Speech Signal Process..

[8]  Francesco Palmieri,et al.  Frequency analysis and synthesis of a class of nonlinear filters , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  Francesco Palmieri,et al.  MEKA-a fast, local algorithm for training feedforward neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[10]  Francesco Palmieri,et al.  Hybrid order statistic filters for adaptive image restoration , 1990, Other Conferences.

[11]  M. Fox,et al.  Linear Discriminant Based Mammographic Tumor Classification Using Shape Descriptors , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[12]  Francesco Palmieri Adaptive recursive order statistic filters , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[13]  Francesco Palmieri,et al.  Learning binaural sound localization through a neural network , 1991, Proceedings of the 1991 IEEE Seventeenth Annual Northeast Bioengineering Conference.

[14]  Francesco Palmieri,et al.  Image restoration based on perception-related cost functions , 1991, Electronic Imaging.

[15]  Y. Bar-Shalom,et al.  Analysis of wide-band cross-correlation for target detection and time delay estimation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[16]  F. Palmieri,et al.  A comparison of two eigen-networks , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[17]  Francesco Palmieri,et al.  Sound localization with a neural network trained with the multiple extended Kalman algorithm , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[18]  F. Palmieri,et al.  Unsupervised learning in constrained linear networks , 1991, Proceedings of the 1991 IEEE Seventeenth Annual Northeast Bioengineering Conference.

[19]  Francesco Palmieri,et al.  Adaptive channel equalization using generalized order statistic filters , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[20]  Francesco Palmieri,et al.  Linear neural networks which minimize the output variance , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[21]  Francesco Palmieri,et al.  An artificial neural network for studying binaural sound localization , 1991, Proceedings of the 1991 IEEE Seventeenth Annual Northeast Bioengineering Conference.

[22]  F. Palmieri A self-organizing neural network for multidimensional approximation , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[23]  Francesco Palmieri,et al.  Analyses of the genetic algorithms in the continuous space , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  Francesco Palmieri,et al.  Optimal filtering algorithms for fast learning in feedforward neural networks , 1992, Neural Networks.

[25]  Robert B. Northrop,et al.  Location of partial discharges in shielded cables in the presence of high noise , 1992 .

[26]  Francesco Palmieri,et al.  Neural coding of interaural time difference , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[27]  F. Palmieri A self-organizing neural network for nonlinear filtering , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[28]  Francesco Palmieri,et al.  The Diversification Role of Crossover in the Genetic Algorithms , 1993, ICGA.

[29]  Jie Zhu,et al.  Anti-Hebbian learning in topologically constrained linear networks: a tutorial , 1993, IEEE Trans. Neural Networks.

[30]  Anil Kumar,et al.  Analysis of Wide-Band Cross Correlation for Time-Delay Estimation , 1993, IEEE Trans. Signal Process..

[31]  Francesco Palmieri,et al.  Partial discharge propagation model and location estimate , 1994, Proceedings of 1994 IEEE International Symposium on Electrical Insulation.

[32]  F. Palmieri,et al.  Hebbian learning and self-association in nonlinear neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[33]  Jie Zhu,et al.  Self-association and Hebbian learning in linear neural networks , 1995, IEEE Trans. Neural Networks.

[34]  A. Moiseff,et al.  An artificial neural network for sound localization using binaural cues. , 1996, The Journal of the Acoustical Society of America.

[35]  Francesco Palmieri,et al.  Principal components via cascades of block-layers , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[36]  Francesco Palmieri,et al.  New bounds for correct generalization , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[37]  G. Franceschetti,et al.  Studio del meccanismo di propagazione ottica in un reticolo percolativo in "La Radio per l' Ultimo Miglio (Sistemi Terrestri)" , 1997 .

[38]  Francesco Palmieri,et al.  The Computational Neural Map and its Capacity , 1997 .

[39]  Francesco Palmieri,et al.  Searching for a binary factorial code using the ICA framework , 1998, Neurocomputing.

[40]  Francesco Palmieri,et al.  EM Algorithm: A Neural Network View , 1998 .

[41]  Francesco Palmieri,et al.  Self-association in multilayer linear networks with limited connectivity , 1998, Neural Networks.

[42]  F. Palmieri,et al.  A Distribution-Free VC-Dimension-Based Performance Bound , 1998 .

[43]  Giorgio Franceschetti,et al.  Phase unwrapping by means of genetic algorithms , 1998 .

[44]  Simon Haykin,et al.  Adaptive nonlinear filtering with the support vector method , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[45]  Simon Haykin,et al.  An explicit algorithm for training support vector machines , 1999, IEEE Signal Processing Letters.

[46]  Francesco Palmieri,et al.  Support Vector Machine for Nonparametric Binary Hypothesis Testing , 1999 .

[47]  Francesco Palmieri,et al.  Inhibitory synapses in neural networks with sigmoidal nonlinearities , 1999, IEEE Trans. Neural Networks.

[48]  Simon Haykin,et al.  Simple and robust methods for support vector expansions , 1999, IEEE Trans. Neural Networks.

[49]  S. Haykin,et al.  Training Semiparametric Support Vector Machines , 1999 .

[50]  Francesco Palmieri,et al.  Multi-Layer Independent Component Analysis (MLICA) , 1999 .

[51]  G. Franceschetti,et al.  STATISTICAL CHARACTERIZATION OF RAY PROPAGATION IN A RANDOM LATTICE , 1999 .

[52]  Simon Haykin,et al.  Generalized support vector machines , 1999, ESANN.

[53]  Francesco Palmieri,et al.  Independent component analysis for mixture densities , 1999, ESANN.

[54]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[55]  G. Franceschetti,et al.  Propagation without wave equation toward an urban area model , 1999 .

[56]  Francesco Palmieri,et al.  From Spiking Neurons to Dynamic Perceptrons , 1999 .

[57]  F. Palmieri,et al.  Multi-Class Independent Component Analysis (MUCICA) for Rank-Deficient Distributions , 2000 .

[58]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[59]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[60]  Francesco Palmieri,et al.  Unsupervised rank-deficient density estimation via multi-class independent component analysis , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[61]  Stefano Marsili-Libelli,et al.  Adaptive mutation in genetic algorithms , 2000, Soft Comput..

[62]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[63]  Francesco Palmieri,et al.  An algorithm for transform coding for lossy packet networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[64]  Simon Haykin,et al.  Semiparametric Support Vector Machines for Nonlinear Model Estimation , 2001 .

[65]  S. Marano,et al.  Measurement fusion for target tracking under bandwidth constraints , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[66]  Nevin Lianwen Zhang,et al.  Hierarchical latent class models for cluster analysis , 2002, J. Mach. Learn. Res..

[67]  Francesco Palmieri,et al.  A Comparison of Signal Compression Methods by Sparse Solution of Linear Systems , 2002, WIRN.

[68]  Francesco Palmieri,et al.  A Method for Automatic Extraction of Fujisaki-Model Parameters , 2002 .

[69]  G. Franceschetti,et al.  Percolation model for urban area propagation: results and open problems , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[70]  Simon Haykin,et al.  Efficient sparse FIR filter design , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[71]  Francesco Palmieri,et al.  Generalized Independent Component Analysis as Density Estimation , 2002, WIRN.

[72]  Giorgio Franceschetti,et al.  Discrete Green's methods and their application to two-dimensional phase unwrapping. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[73]  F. Palmieri,et al.  The role of entropy in wave propagation , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[74]  Francesco Palmieri,et al.  Inversion of F/sub 0/ model for natural-sounding speech synthesis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[75]  F. Palmieri,et al.  Noncausal filters: possible implementations and their complexity , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[76]  Francesco Palmieri,et al.  Multi-class Image Coding via EM-KLT Algorithm , 2003, WIRN.

[77]  Francesco Palmieri,et al.  Bayesian Modelling for Packet Channels , 2003, WIRN.

[78]  M. Fedi,et al.  Nonstationary analysis of geomagnetic time sequences from Mount Etna and North Palm Springs earthquake , 2003 .

[79]  G. Iannello,et al.  Packet interleaving over lossy channels , 2004, Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004..

[80]  John M. Winn,et al.  Variational Message Passing and its Applications , 2004 .

[81]  Francesco Palmieri,et al.  Multiple description image coder using correlating transforms , 2004, 2004 12th European Signal Processing Conference.

[82]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[83]  Francesco Palmieri,et al.  Prosody modification and Fujisaki's model: Preserving natural soundness , 2004, 2004 12th European Signal Processing Conference.

[84]  Stuart J. Russell,et al.  Adaptive Probabilistic Networks with Hidden Variables , 1997, Machine Learning.

[85]  Jie Yu,et al.  Internet loss-delay modeling by use of input/output hidden Markov models , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..

[86]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[87]  Peter Willett,et al.  Soft iterative decoding for overloaded CDMA , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[88]  G. Romano,et al.  Separability and Gain Control for Overloaded CDMA , 2005 .

[89]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[90]  G. Iannello,et al.  A distributed coding cooperative scheme for wireless communications , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[91]  Francesco Palmieri,et al.  Optimal correlating transform for erasure channels , 2005, IEEE Signal Processing Letters.

[92]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[93]  Sascha Korl A factor graph approach to signal modelling, system identification and filtering , 2005 .

[94]  Daniel Zelterman,et al.  Bayesian Artificial Intelligence , 2005, Technometrics.

[95]  Antonio Pescapè,et al.  End-to-end packet-channel Bayesian model applied to heterogeneous wireless networks , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[96]  Francesco Palmieri,et al.  Joint end-to-end loss-delay hidden Markov model for periodic UDP traffic over the Internet , 2006, IEEE Transactions on Signal Processing.

[97]  Matthew J. Beal,et al.  Variational Bayesian learning of directed graphical models with hidden variables , 2006 .

[98]  P. Willett,et al.  Asymptotic multiuser efficiency in overloaded CDMA , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[99]  Alberto Dainotti,et al.  An HMM Approach to Internet Traffic Modeling , 2006 .

[100]  Francesco Palmieri,et al.  Bidirectional MIMO equalizer design , 2006, 2006 14th European Signal Processing Conference.

[101]  Francesco Palmieri,et al.  An Energy-Division Multiple Access Scheme , 2006, 2006 9th International Conference on Information Fusion.

[102]  D. Ciuonzo,et al.  Group gain design for overloaded CDMA , 2007, 2007 IEEE 8th Workshop on Signal Processing Advances in Wireless Communications.

[103]  Francesco Palmieri,et al.  On Asymptotic Efficiency for Asynchronous CDMA , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[104]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[105]  Justin Dauwels,et al.  On Variational Message Passing on Factor Graphs , 2007, 2007 IEEE International Symposium on Information Theory.

[106]  Francesco Palmieri,et al.  A New Design Paradigm for MIMO Dispersive Channel DF Equalizer , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[107]  Francesco Palmieri,et al.  A Scheme for Multiuser Communications based on Energy Division , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[108]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[109]  Athina P. Petropulu,et al.  Distributed Linear Block Coding for Cooperative Wireless Communications , 2007, IEEE Signal Processing Letters.

[110]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[111]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[112]  Francesco Palmieri,et al.  On time diversity for packet channels , 2008, Comput. Commun..

[113]  L. Williams,et al.  Contents , 2020, Ophthalmology (Rochester, Minn.).

[114]  Francesco Palmieri,et al.  A jitter model for OFDM systems , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[115]  P. Dooren,et al.  Non-negative matrix factorization with fixed row and column sums , 2008 .

[116]  Francesco Palmieri Notes on Factor Graphs , 2008, WIRN.

[117]  Antonio Pescapè,et al.  Internet traffic modeling by means of Hidden Markov Models , 2008, Comput. Networks.

[118]  P. Willett,et al.  Practical fusion of quantized measurements via particle filtering , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[119]  Francesco Palmieri Notes on Cutset Conditioning on Factor Graphs with Cycles , 2009, WIRN.

[120]  Francesco Palmieri,et al.  QAM Receiver with Band-Pass Sampling and blind synchronization , 2009, 2009 IEEE Aerospace conference.

[121]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[122]  Andrew W. Eckford,et al.  Expectation Maximization as Message Passing - Part I: Principles and Gaussian Messages , 2009, ArXiv.

[123]  Francesco Palmieri,et al.  A tree-search algorithm for ML decoding in underdetermined MIMO systems , 2009, 2009 6th International Symposium on Wireless Communication Systems.

[124]  Francesco Palmieri,et al.  Tree-search ML detection for underdetermined MIMO systems with M-PSK constellations , 2010, 2010 7th International Symposium on Wireless Communication Systems.

[125]  Francesco Palmieri,et al.  Data Fusion with Entropic Priors , 2010, WIRN.

[126]  Francesco Palmieri,et al.  Building a bayesian factor tree from examples , 2010, 2010 2nd International Workshop on Cognitive Information Processing.

[127]  A. Petropulu,et al.  Sparse sampling for Software Defined Radio receivers , 2010, 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[128]  Martin J. Wainwright,et al.  Major Advances and Emerging Developments of Graphical Models [From the Guest Editors] , 2010 .

[129]  Francesco Palmieri,et al.  Entropic priors for short-term stochastic process classification , 2011, 14th International Conference on Information Fusion.

[130]  Francesco Palmieri,et al.  From Examples to Bayesian Inference , 2011, WIRN.

[131]  Francesco Palmieri,et al.  Gain design and power allocation for overloaded MIMO-OFDM systems with channel state information and iterative multiuser detection , 2011, 2011 8th International Symposium on Wireless Communication Systems.

[132]  Fred Harris,et al.  Two channel TI-ADC for communication signals , 2011, 2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications.

[133]  Francesco Palmieri,et al.  Distributed classification of multiple moving targets with binary wireless sensor networks , 2011, 14th International Conference on Information Fusion.

[134]  Christopher K. I. Williams,et al.  Greedy Learning of Binary Latent Trees , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[135]  Vincent Y. F. Tan,et al.  High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions , 2011, NIPS.

[136]  Francesco Palmieri,et al.  On the Performance of Energy-Division Multiple Access with Regular Constellations , 2010, Wireless Personal Communications.

[137]  F. Palmieri,et al.  Consistency of sequence classification with entropic priors , 2012 .

[138]  Francesco Palmieri,et al.  Probability Learning and Soft Quantization in Bayesian Factor Graphs , 2012, WIRN.

[139]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[140]  Massimiliano Mattei,et al.  Mobile sensor networks based on autonomous platforms for homeland security , 2012, 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS).

[141]  Sung Jin Hwang,et al.  Geometric Representations of High Dimensional Random Data. , 2012 .

[142]  Francesco Palmieri,et al.  Low-complexity dominance-based sphere decoder for MIMO systems , 2013, Signal Process..

[143]  F. A. N. Palmieri,et al.  Harbour surveillance with cameras calibrated with AIS data , 2013, 2013 IEEE Aerospace Conference.

[144]  Francesco Palmieri,et al.  Data Fusion Using a Factor Graph for Ship Tracking in Harbour Scenarios , 2013, WIRN.

[145]  Francesco Palmieri,et al.  A Comparison of Algorithms for Learning Hidden Variables in Normal Graphs , 2013, ArXiv.

[146]  Francesco Palmieri,et al.  Objective priors from maximum entropy in data classification , 2013, Inf. Fusion.

[147]  Francesco Palmieri,et al.  Learning Non-Linear Functions With Factor Graphs , 2013, IEEE Transactions on Signal Processing.

[148]  Francesco Palmieri,et al.  On the Performance of Energy-Division Multiple Access Over Fading Channels , 2013, Wirel. Pers. Commun..

[149]  Vincenzo Lippiello,et al.  Real-Time Estimation of Planar Surfaces in Arbitrary Environments Using Microsoft Kinect Sensor , 2013, ICIAP.

[150]  Francesco Castaldo,et al.  Image fusion for object tracking using Factor Graphs , 2014, 2014 IEEE Aerospace Conference.

[151]  Francesco Palmieri,et al.  A multi-camera Multi-Target Tracker based on Factor Graphs , 2014, 2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings.

[152]  Francesco Palmieri,et al.  Application of factor graphs to multi-camera fusion for maritime tracking , 2014, 2014 4th International Workshop on Cognitive Information Processing (CIP).

[153]  Francesco Palmieri,et al.  Belief propagation and learning in convolution multi-layer factor graphs , 2014, 2014 4th International Workshop on Cognitive Information Processing (CIP).

[154]  Francesco Palmieri,et al.  Abnormal vessel behavior detection in port areas based on Dynamic Bayesian Networks , 2014, 17th International Conference on Information Fusion (FUSION).

[155]  Francesco Palmieri,et al.  Online Bayesian learning and classification of ship-to-ship interactions for port safety , 2014, 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[156]  Francesco Palmieri,et al.  Simulink Implementation of Belief Propagation in Normal Factor Graphs , 2015, Advances in Neural Networks.

[157]  Francesco Palmieri,et al.  Target tracking using factor graphs and multi-camera systems , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[158]  Francesco Palmieri,et al.  Towards Building Deep Networks with Bayesian Factor Graphs , 2015, ArXiv.

[159]  Francesco Palmieri,et al.  Discrete independent component analysis (DICA) with belief propagation , 2015, 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP).

[160]  Francesco Palmieri,et al.  Two-dimensional multi-layer Factor Graphs in Reduced Normal Form , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[161]  Francesco Palmieri,et al.  3-D Hand Pose Estimation from Kinect's Point Cloud Using Appearance Matching , 2016, Advances in Neural Networks.

[162]  Marina Fruehauf,et al.  Nonlinear Programming Analysis And Methods , 2016 .

[163]  Francesco Palmieri,et al.  Bayesian Analysis of Behaviors and Interactions for Situation Awareness in Transportation Systems , 2016, IEEE Transactions on Intelligent Transportation Systems.