A qualitative description of the horoboundary of the Teichm\"uller metric

Two commonly studied compactifications of Teichmüller spaces of finite type surfaces with respect to the Teichmüller metric are the horofunction and visual compactifications. We show that these two compactifications are related, by proving that the horofunction compactification is finer than the visual compactification. This allows us to use the simplicity of the visual compactification to obtain topological properties of the horofunction compactification. Among other things, we show that the horoboundary of Teichmüller space is path connected and that its Busemann points are not dense, we determine for which surfaces the horofunction compactification is isomorphic to the visual one, and we show that some horocycles diverge in the visual compactification based at some point. As an ingredient in one of the proofs we show that the extremal length is not C for any ε > 0 along some paths that are smooth with respect to the piecewise linear structure on measured foliations.

[1]  M. Gromov,et al.  Hyperbolic Manifolds, Groups and Actions , 1981 .

[2]  M. Rees Teichmüller Distance for Analytically Finite Surfaces is C2 , 2002 .

[3]  On the boundary of Teichmüller disks in Teichmüller and in Schottky space , 2007, math/0702496.

[4]  Maxime Fortier Bourque A divergent horocycle in the horofunction compactification of the Teichmüller metric , 2019, Annales de l'Institut Fourier.

[5]  Andrew J. Nicas,et al.  The Horofunction boundary of the Heisenberg Group: The Carnot-Carathéodory metric , 2010 .

[6]  C. Walsh The asymptotic geometry of the Teichmüller metric , 2018, Geometriae Dedicata.

[7]  W. Abikoff,et al.  The real analytic theory of Teichmüller space , 1980 .

[8]  한성민,et al.  WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis , 2021, Odontology.

[9]  Valentin Poénaru,et al.  Thurston ’ s work on surfaces , 2013 .

[10]  H. Royden Automorphisms and Isometries of Teichmilller Space , 1971 .

[11]  F. Bonahon Geodesic laminations with transverse Hölder distributions , 1997 .

[12]  H. Masur,et al.  The Poisson boundary of the mapping class group , 1996 .

[13]  Graham A. Niblo,et al.  On Hibert's Metric for Simplices , 1993 .

[14]  B. Cornils Fenn , 2020, Catalysis from A to Z.

[15]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[16]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[17]  A. Papadopoulos Deux remarques sur la géométrie symplectique de l'espace des feuilletages mesurés sur une surface , 1986 .

[18]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[19]  Bowen Yang,et al.  Toy Teichmüller spaces of real dimension 2: the pentagon and the punctured triangle , 2017, 1704.04331.

[20]  John H. Hubbard,et al.  Quadratic differentials and foliations , 1979 .

[21]  M. Peigné,et al.  ON THE HOROBOUNDARY AND THE GEOMETRY OF RAYS OF NEGATIVELY CURVED MANIFOLDS , 2012 .

[22]  K. Strebel Quadratic Differentials: A Survey , 1984 .

[23]  H. Masur Interval Exchange Transformations and Measured Foliations , 1982 .

[24]  Hideki Miyachi Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II , 2013 .

[25]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[26]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[27]  D. Bao,et al.  An Introduction to Riemann-Finsler Geometry , 2000 .

[28]  C. Walsh The horofunction boundary and isometry group of the Hilbert geometry , 2014, 1411.6175.

[29]  F. Bonahon Transverse Hölder distributions for geodesic laminations , 1997 .

[30]  M. Christ,et al.  Nilpotent Group C*-algebras as Compact Quantum Metric Spaces , 2002, Canadian mathematical bulletin.

[31]  W. Su,et al.  The horofunction compactification of the Teichmüller metric , 2010 .

[32]  Hideki Miyachi Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space , 2008 .

[33]  C. Walsh The horoboundary and isometry group of Thurston's Lipschitz metric , 2010, 1006.2158.

[34]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[35]  S. Kerckhoff The asymptotic geometry of teichmuller space , 1980 .

[36]  Schmidt Dieter,et al.  SCIENCE CHINA Mathematics , 2011 .

[37]  TOPOl , 2021, The Early Arabic Historical Tradition._x000B_A Source-Critical Study.

[38]  권경학,et al.  4 , 1906, Undiscovered Country.

[39]  F. Bonahon Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form , 1996 .

[40]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[41]  W. Su,et al.  Convergence of earthquake and horocycle paths to the boundary of Teichmüller space , 2015, 1512.08664.

[42]  Vincent Alberge Convergence of some horocyclic deformations to the Gardiner-Masur boundary , 2015, 1506.07665.

[43]  H. Masur,et al.  Extremal length geometry of teichmüller space , 1991 .

[44]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[45]  C. Walsh,et al.  ISOMETRIES OF POLYHEDRAL HILBERT GEOMETRIES , 2009, 0904.3306.

[46]  G. Tiozzo,et al.  Random walks on weakly hyperbolic groups , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).

[47]  Conformal surface embeddings and extremal length , 2015, 1507.05294.