A qualitative description of the horoboundary of the Teichm\"uller metric
暂无分享,去创建一个
[1] M. Gromov,et al. Hyperbolic Manifolds, Groups and Actions , 1981 .
[2] M. Rees. Teichmüller Distance for Analytically Finite Surfaces is C2 , 2002 .
[3] On the boundary of Teichmüller disks in Teichmüller and in Schottky space , 2007, math/0702496.
[4] Maxime Fortier Bourque. A divergent horocycle in the horofunction compactification of the Teichmüller metric , 2019, Annales de l'Institut Fourier.
[5] Andrew J. Nicas,et al. The Horofunction boundary of the Heisenberg Group: The Carnot-Carathéodory metric , 2010 .
[6] C. Walsh. The asymptotic geometry of the Teichmüller metric , 2018, Geometriae Dedicata.
[7] W. Abikoff,et al. The real analytic theory of Teichmüller space , 1980 .
[8] 한성민,et al. WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis , 2021, Odontology.
[9] Valentin Poénaru,et al. Thurston ’ s work on surfaces , 2013 .
[10] H. Royden. Automorphisms and Isometries of Teichmilller Space , 1971 .
[11] F. Bonahon. Geodesic laminations with transverse Hölder distributions , 1997 .
[12] H. Masur,et al. The Poisson boundary of the mapping class group , 1996 .
[13] Graham A. Niblo,et al. On Hibert's Metric for Simplices , 1993 .
[14] B. Cornils. Fenn , 2020, Catalysis from A to Z.
[15] 野村栄一,et al. 2 , 1900, The Hatak Witches.
[16] 友紀子 中川. SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.
[17] A. Papadopoulos. Deux remarques sur la géométrie symplectique de l'espace des feuilletages mesurés sur une surface , 1986 .
[18] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[19] Bowen Yang,et al. Toy Teichmüller spaces of real dimension 2: the pentagon and the punctured triangle , 2017, 1704.04331.
[20] John H. Hubbard,et al. Quadratic differentials and foliations , 1979 .
[21] M. Peigné,et al. ON THE HOROBOUNDARY AND THE GEOMETRY OF RAYS OF NEGATIVELY CURVED MANIFOLDS , 2012 .
[22] K. Strebel. Quadratic Differentials: A Survey , 1984 .
[23] H. Masur. Interval Exchange Transformations and Measured Foliations , 1982 .
[24] Hideki Miyachi. Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II , 2013 .
[25] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[26] Benson Farb,et al. A primer on mapping class groups , 2013 .
[27] D. Bao,et al. An Introduction to Riemann-Finsler Geometry , 2000 .
[28] C. Walsh. The horofunction boundary and isometry group of the Hilbert geometry , 2014, 1411.6175.
[29] F. Bonahon. Transverse Hölder distributions for geodesic laminations , 1997 .
[30] M. Christ,et al. Nilpotent Group C*-algebras as Compact Quantum Metric Spaces , 2002, Canadian mathematical bulletin.
[31] W. Su,et al. The horofunction compactification of the Teichmüller metric , 2010 .
[32] Hideki Miyachi. Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space , 2008 .
[33] C. Walsh. The horoboundary and isometry group of Thurston's Lipschitz metric , 2010, 1006.2158.
[34] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[35] S. Kerckhoff. The asymptotic geometry of teichmuller space , 1980 .
[36] Schmidt Dieter,et al. SCIENCE CHINA Mathematics , 2011 .
[37] TOPOl , 2021, The Early Arabic Historical Tradition._x000B_A Source-Critical Study.
[38] 권경학,et al. 4 , 1906, Undiscovered Country.
[39] F. Bonahon. Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form , 1996 .
[40] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[41] W. Su,et al. Convergence of earthquake and horocycle paths to the boundary of Teichmüller space , 2015, 1512.08664.
[42] Vincent Alberge. Convergence of some horocyclic deformations to the Gardiner-Masur boundary , 2015, 1506.07665.
[43] H. Masur,et al. Extremal length geometry of teichmüller space , 1991 .
[44] S. Ana,et al. Topology , 2018, International Journal of Mathematics Trends and Technology.
[45] C. Walsh,et al. ISOMETRIES OF POLYHEDRAL HILBERT GEOMETRIES , 2009, 0904.3306.
[46] G. Tiozzo,et al. Random walks on weakly hyperbolic groups , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).
[47] Conformal surface embeddings and extremal length , 2015, 1507.05294.