GaAs-based 1.3 µm InGaAs quantum dot lasers: A status report

We review the present status of InGaAs quantum dot lasers on GaAs sub-strates emitting near and at 1.3 µm. Such lasers are shown to be extremely promising for cost-efficient commercial applications in optical fiber communication. Threshold current densities a low as ∼20 Acm−2 per QD sheet are achieved. Room temperature continuous wave operation at 2.7 W for broad stripe devices is demonstrated. The maximum differential efficiency amounts to 57%. Moreover, single lateral mode continuous wave operation with a maximum output power of 110 mW is realized. Prospects for 1.3 µm GaAs-based vertical cavity surface emitting lasers are given. We also show that the longest wavelength of QD GaAs-based light emitting devices can be potentially extended to 1.7 µm.

[1]  Jamie D. Phillips,et al.  Room-temperature operation of In0.4Ga0.6As/GaAs self-organised quantum dot lasers , 1996 .

[2]  Andreas Stintz,et al.  Extremely low room-temperature threshold current density diode lasers using InAs dots in In/sub 0.15/Ga/sub 0.85/As quantum well , 1999 .

[3]  Levon V. Asryan,et al.  Temperature dependence of the threshold current density of a quantum dot laser , 1998 .

[4]  Hajime Shoji,et al.  Emission from discrete levels in self‐formed InGaAs/GaAs quantum dots by electric carrier injection: Influence of phonon bottleneck , 1996 .

[5]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[6]  A. R. Kovsh,et al.  Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm , 1999 .

[7]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[8]  D. Bossert,et al.  Gain, refractive index, and /spl alpha/-parameter in InGaAs-GaAs SQW broad-area lasers , 1996, IEEE Photonics Technology Letters.

[9]  Guyer,et al.  Morphological stability of alloy thin films. , 1995, Physical review. B, Condensed matter.

[10]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[11]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[12]  Diana L. Huffaker,et al.  Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture , 1997 .

[13]  D. Deppe,et al.  Threshold temperature dependence of lateral-cavity quantum-dot lasers , 1998, IEEE Photonics Technology Letters.

[14]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[15]  N. Yokoyama,et al.  1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA , 1999, IEEE Photonics Technology Letters.

[16]  Nikolai N. Ledentsov,et al.  1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .

[17]  John E. Bowers,et al.  1.3 μm photoluminescence from InGaAs quantum dots on GaAs , 1995 .

[18]  Egorov,et al.  Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. , 1996, Physical review. B, Condensed matter.

[19]  N. K. Polyakov,et al.  Formation of InGaAs/GaAs quantum dots by submonolayer molecular beam epitaxy , 1995 .

[20]  H. Deng,et al.  1.15-μm wavelength oxide-confined quantum-dot vertical-cavity surface-emitting laser , 1998, IEEE Photonics Technology Letters.

[21]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[22]  Mikhail V. Maximov,et al.  Properties of strained (In, Ga, Al)As lasers with laterally modulated active region , 1997 .

[23]  N. Ledentsov,et al.  Low-threshold injection lasers based on vertically coupled quantum dots , 1997 .

[24]  Mikhail V. Maximov,et al.  Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates , 1999 .

[25]  James A. Lott,et al.  Vertical cavity lasers based on vertically coupled quantum dots , 1997 .

[26]  Levon V. Asryan,et al.  Characteristic temperature of quantum dot laser , 1997 .

[27]  Daniil A. Livshits,et al.  High power CW operation of InGaAsN lasers at 1.3 [micro sign]m , 1999 .

[28]  K. Nishi,et al.  Low-threshold lasing from high-density InAs quantum dots of uniform size , 1999 .

[29]  Shigeo Sugou,et al.  Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission , 1998 .

[30]  P. Bhattacharya,et al.  Structural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room-temperature emission at 1.3 μm , 1999 .

[31]  M. Sugawara,et al.  Suppression of temperature sensitivity of interband emission energy in 1.3-μm-region by an InGaAs overgrowth on self-assembled InGaAs/GaAs quantum dots , 1999 .

[32]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[33]  G. Park,et al.  Temperature dependence of lasing characteristics for long-wavelength (1.3-μm) GaAs-based quantum-dot lasers , 1999, IEEE Photonics Technology Letters.

[34]  Levon V. Asryan,et al.  Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser , 1996 .

[35]  Diana L. Huffaker,et al.  Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser , 1999 .

[36]  Diana L. Huffaker,et al.  Electroluminescence efficiency of 1.3 μm wavelength InGaAs/GaAs quantum dots , 1998 .

[37]  Levon V. Asryan,et al.  Charge neutrality violation in quantum-dot lasers , 1997 .

[38]  D. Deppe,et al.  Quantum dot resonant cavity photodiode with operation near 1.3 /spl mu/m wavelength , 1997 .

[39]  A. R. Kovsh,et al.  InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .

[40]  D. Bimberg,et al.  Quantum dot lasers: recent progress in theoretical understanding and demonstration of high-output-power operation , 1999 .

[41]  Serge Luryi,et al.  Future Trends in Microelectronics , 1996 .

[42]  Mikhail V. Maximov,et al.  3.5 W CW operation of quantum dot laser , 1999 .

[43]  Dieter Bimberg,et al.  Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition , 1997 .

[44]  Nikolai N. Ledentsov,et al.  An injection heterojunction laser based on arrays of vertically coupled InAs quantum dots in a GaAs matrix , 1996 .

[45]  J. D. Evans,et al.  Maximum operating power of 1.3 μm strained layer multiple quantum well InGaAsP lasers , 1999 .

[46]  T. Hirono,et al.  Dominant mechanism for limiting the maximum operating temperature of InP‐based multiple‐quantum‐well lasers , 1996 .

[47]  S. Mikhrin,et al.  Continuous-wave operation of long-wavelength quantum-dot diode laser on a GaAs substrate , 1999, IEEE Photonics Technology Letters.

[48]  Diana L. Huffaker,et al.  Lasing from InGaAs/GaAs quantum dots with extended wavelength and well-defined harmonic-oscillator energy levels , 1998 .

[49]  N. Ledentsov,et al.  Control of the emission wavelength of self-organized InGaAs quantum dots: main achievements and present status , 1999 .

[50]  Nikolai N. Ledentsov,et al.  InGaAs/GaAs Quantum Dot Lasers with Ultrahigh Characteristic Temperature (T 0= 385 K) Grown by Metal Organic Chemical Vapour Deposition , 1997 .

[51]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[52]  A. Stintz,et al.  Optical characteristics of 1.24-μm InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[53]  Hiroshi Ishikawa,et al.  Room temperature CW operation at the ground state of self-formed quantum dot lasers with multi-stacked dot layer , 1996 .

[54]  M. Nishioka,et al.  Vertical Microcavity Lasers with InGaAs/GaAs Quantum Dots Formed by Spinodal Phase Separation , 1997 .

[55]  F. Léonard,et al.  Alloy decomposition and surface instabilities in thin films , 1998 .

[56]  John E. Bowers,et al.  Laterally oxidized long wavelength CW vertical- cavity lasers , 1996 .

[57]  K. Nishi,et al.  Shape transition of InAs quantum dots by growth at high temperature , 1999 .

[58]  M. Sugawara,et al.  Self-Formed In0.5Ga0.5As Quantum Dots on GaAs Substrates Emitting at 1.3 µm , 1994 .

[59]  G. Erbert,et al.  Gain spectra measurements by a variable stripe length method with current injection , 1997 .

[60]  Diana L. Huffaker,et al.  Spontaneous emission and threshold characteristics of 1.3-/spl mu/m InGaAs-GaAs quantum-dot GaAs-based lasers , 1999 .

[61]  Dieter Bimberg,et al.  Gain and Threshold of Quantum Dot Lasers: Theory and Comparison to Experiments , 1997 .

[62]  K. Uomi,et al.  1.3-μm continuous-wave lasing operation in GaInNAs quantum-well lasers , 1998, IEEE Photonics Technology Letters.

[63]  N. Ledentsov,et al.  Emission of electrons from the ground and first excited states of self-organized InAs/GaAs quantum dot structures , 1999 .

[64]  Ichiro Ogura,et al.  Room‐temperature lasing operation of a quantum‐dot vertical‐cavity surface‐emitting laser , 1996 .

[65]  Yu. G. Musikhin,et al.  Electronic structure of self-assembled InAs quantum dots in GaAs matrix , 1998 .

[66]  N. Ledentsov,et al.  Vertical correlations and anticorrelations in multisheet arrays of two-dimensional islands , 1998 .

[67]  V. Shchukin,et al.  Development of composition inhomogeneities in layer-by-layer growth of an exponential film of a solid solution of III-V semiconductors , 1993 .

[68]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .