Surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement via geometry modification

The issues of surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement of microcantilever-based biosensors are investigated in this paper. A remarkably precise and simple analytical formula for calculating surface stress-induced deflection of a microcantilever with various widths is deduced. Particularly, the effect of surface stress on the location of the microcantilever's neutral axis is considered. This explicit analytical formula is validated by the finite element method simulation. An analytical equation for computing the fundamental resonant frequency of a microcantilever with various widths is also derived. This paper explores the deflections and resonant frequencies of the microcantilevers having basic and modified shapes. It is found that minimizing the effective mass near the microcantilever's free end and the clamping width at the fixed end significantly enhances the overall microcantilever sensitivity. A novel microcantilever, which is expected to have much more excellent performance and overall sensitivity than the simple rectangular-shaped microcantilever, is proposed as sensor element in biological detection.

[1]  Jan Greve,et al.  A detailed analysis of the optical beam deflection technique for use in atomic force microscopy , 1992 .

[2]  Peter Williams,et al.  Quantitative surface stress measurements using a microcantilever , 2001 .

[3]  John E. Sader,et al.  Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: Rectangular plates , 2001 .

[4]  L. B. Freund,et al.  Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations , 1999 .

[5]  Xian‐Fang Li,et al.  Theoretical analysis of surface stress for a microcantilever with varying widths , 2008 .

[6]  T. Thundat,et al.  Calibration of optical cantilever deflection readers , 2004 .

[7]  Thomas Thundat,et al.  RESONANCE RESPONSE OF SCANNING FORCE MICROSCOPY CANTILEVERS , 1994 .

[8]  T. Itoh,et al.  Self-excited piezoelectric PZT microcantilevers for dynamic SFM—with inherent sensing and actuating capabilities , 1999 .

[9]  Thomas Thundat,et al.  Thermal and ambient-induced deflections of scanning force microscope cantilevers , 1994 .

[10]  M. Fujihira,et al.  Calibration of surface stress measurements with atomic force microscopy , 1997 .

[11]  S. Waltman,et al.  Micromachined silicon tunnel sensor for motion detection , 1991 .

[12]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[13]  Masaya Toda,et al.  Surface stress, thickness, and mass of the first few layers of polyelectrolyte. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[15]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[16]  Chongdu Cho,et al.  Comparison between Deflection and Vibration Characteristics of Rectangular and Trapezoidal profile Microcantilevers , 2009, Sensors.

[17]  M. Grattarola,et al.  Micromechanical cantilever-based biosensors , 2001 .

[18]  N. Amer,et al.  Erratum: Novel optical approach to atomic force microscopy [Appl. Phys. Lett. 53, 1045 (1988)] , 1988 .

[19]  William J. Kaiser,et al.  Micromachined tunneling displacement transducers for physical sensors , 1993 .

[20]  Yoonsuk Lee,et al.  ProteoChip: A highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein‐protein interaction studies , 2003, Proteomics.

[21]  Sangmin Jeon,et al.  Instant curvature measurement for microcantilever sensors , 2004 .

[22]  Genki Yoshikawa,et al.  Nanomechanical membrane-type surface stress sensor. , 2011, Nano letters.

[23]  Panos G. Datskos,et al.  Gold Nano-Structures for Transduction of Biomolecular Interactions into Micrometer Scale Movements , 2001 .

[24]  A. Boisen,et al.  Cantilever-like micromechanical sensors , 2011 .

[25]  Anja Boisen,et al.  Polymeric cantilever-based biosensors with integrated readout , 2006 .

[26]  Hans-Jürgen Butt,et al.  A Sensitive Method to Measure Changes in the Surface Stress of Solids , 1996 .

[27]  Panos G. Datskos,et al.  Enhanced chemi-mechanical transduction at nanostructured interfaces , 2001 .

[28]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[29]  Ya-Pu Zhao,et al.  Modelling analysis of surface stress on a rectangular cantilever beam , 2004 .

[30]  Claude A. Klein,et al.  How accurate are Stoney’s equation and recent modifications , 2000 .

[31]  N. D. Rooij,et al.  Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors , 1996 .

[32]  J. E. Stern,et al.  Force microscope using a fiber‐optic displacement sensor , 1988 .

[33]  O. Hansen,et al.  Micromachined AFM transducer with differential capacitive read-out , 1995 .

[34]  Chongdu Cho,et al.  A Study on Increasing Sensitivity of Rectangular Microcantilevers Used in Biosensors , 2008, Sensors.

[35]  Javier Tamayo,et al.  Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. , 2008, Nature nanotechnology.

[36]  T. Itoh,et al.  Piezoelectric force sensor for scanning force microscopy , 1994 .

[37]  Cengiz S. Ozkan,et al.  Analysis, control and augmentation of microcantilever deflections in bio-sensing systems , 2003 .

[38]  James K. Gimzewski,et al.  Surface stress in the self-assembly of alkanethiols on gold , 1997 .

[39]  Thomas Thundat,et al.  Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers , 1995 .

[40]  Anja Boisen,et al.  Design & fabrication of cantilever array biosensors , 2009 .

[41]  Y. Zhao,et al.  Influence of surface stress on frequency of microcantilever-based biosensors , 2004 .

[42]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[43]  Chongdu Cho,et al.  Thermal Characteristics of Microcantilever Biosensors , 2010, BIOSTEC.

[44]  Teodor Gotszalk,et al.  Characterization of a cantilever with an integrated deflection sensor , 1995 .

[45]  Thomas Thundat,et al.  Simulation of adsorption-induced stress of a microcantilever sensor , 2005 .

[46]  S. Fernando,et al.  Improved cantilever profiles for sensor elements , 2007 .

[47]  Chongdu Cho,et al.  Deflection, Frequency, and Stress Characteristics of Rectangular, Triangular, and Step Profile Microcantilevers for Biosensors , 2009, Sensors.

[48]  R. McKendry,et al.  SU8 bio-chemical sensor microarrays , 2006 .

[49]  Barton C. Prorok,et al.  Tailoring Beam Mechanics Towards Enhancing Detection of Hazardous Biological Species , 2007 .

[50]  Jonathan S. Colton,et al.  Influence of surface stress on the resonance behavior of microcantilevers , 2005 .

[51]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[52]  T. Itoh,et al.  Development of a force sensor for atomic force microscopy using piezoelectric thin films , 1993 .

[53]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[54]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[55]  K. Vafai,et al.  Analysis of oscillatory flow disturbances and thermal characteristics inside fluidic cells due to fluid leakage and wall slip conditions. , 2004, Journal of biomechanics.

[56]  Johannes D. Seelig,et al.  Label-free protein assay based on a nanomechanical cantilever array , 2002 .

[57]  K. Khanafer,et al.  MICROCANTILEVERS IN BIOMEDICAL AND THERMO/FLUID APPLICATIONS , 2010 .

[58]  Wenmiao Shu,et al.  Label-free detection of amyloid growth with microcantilever sensors. , 2008, Nanotechnology.