Adaptive Optical Wireless OFDM System with Controlled Asymmetric Clipping

Optical wireless (OW) technology is attractive for short-range high-speed transmission, especially in RF sensitive environments or where secure applications are desired. We consider transmission over a broadband OW channel, present in the non-directed line-of-sight (LOS) link. For communication, we assume a system concept based on a modulation-adaptive OFDM (DMT). Such system offers efficient channel capacity exploitation, while avoiding inconvenient pointing and tracking mechanisms. Moreover, it allows deployment of simple optical components and efficient electrical signal processing. We first show that the dynamically adaptive system can provide great transmission rate enhancements compared to the statically designed one, even assuming a very conservative constraint on the electrical signal waveform (i.e., no clipping). Then, we show that significant further improvements can be achieved by tolerating some clipping, at the cost of accepting a minor increase of the symbol error rate.

[1]  John M. Cioffi,et al.  Dynamic spectrum management for next-generation DSL systems , 2002 .

[2]  Joseph M. Kahn,et al.  Rate-adaptive modulation techniques for infrared wireless communications , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[3]  Mohsen Kavehrad,et al.  High-speed power-efficient indoor wireless infrared communication using code combining .II , 2002, IEEE Trans. Commun..

[4]  Joseph M. Kahn,et al.  Angle diversity for nondirected wireless infrared communication , 2000, IEEE Trans. Commun..

[5]  M. Castillo-Vazquez,et al.  Angle diversity with rate-adaptive transmission using repetition coding and variable silence periods for wireless infrared communications , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[6]  Iwao Sasase,et al.  Rate-adaptive indoor infrared wireless communication systems using punctured convolutional codes and adaptive PPM , 2001 .

[7]  Antonio Puerta-Notario,et al.  Rate-adaptive indoor wireless infrared links using OOK formats with alternate-position Gaussian pulses , 2001 .

[8]  Dave Wisely,et al.  A 100 Mbit/s tracked optical wireless telepoint , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[9]  V. Jungnickel,et al.  Capacity analysis in indoor wireless infrared communication using adaptive multiple subcarrier transmission , 2005, Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005..

[10]  Douglas L. Jones,et al.  Computationally efficient optimal power allocation algorithms for multicarrier communication systems , 2000, IEEE Trans. Commun..

[11]  Tomoaki Ohtsuki,et al.  Multiple-subcarrier optical communication systems with subcarrier signal-point sequence , 2005, IEEE Transactions on Communications.

[12]  Rafael Perez-Jimenez,et al.  OFDM over indoor wireless optical channel , 2005 .

[13]  A. Puerta-Notario,et al.  Performance evaluation of rate-adaptive transmission techniques for optical wireless communications , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[14]  Ramjee Prasad,et al.  Multicarrier techniques for 4G mobile communications , 2003 .

[15]  Tomoaki Ohtsuki,et al.  Parallel combinatory multiple-subcarrier optical communication systems , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[16]  Lajos Hanzo,et al.  OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting , 2003 .

[17]  Jeffrey B. Carruthers,et al.  Wireless infrared communications , 2003, Proc. IEEE.

[18]  Volker Jungnickel,et al.  Electronic tracking for wireless infrared communications , 2003, IEEE Trans. Wirel. Commun..

[19]  Joseph M. Kahn,et al.  Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[20]  M. Castillo-Vazquez,et al.  Self-orienting receiver for indoor wireless infrared links at high bit rates , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[21]  Langer,et al.  Bit-Loading for Modulation-Adaptive Transmission in Infrared Wireless Indoor Communication , 1996 .

[22]  Volker Jungnickel,et al.  A physical model of the wireless infrared communication channel , 2002, IEEE J. Sel. Areas Commun..

[23]  M. Kavehard,et al.  Multispot diffusing configuration for wireless infrared access , 2000, IEEE Trans. Commun..

[24]  Tomoaki Ohtsuki Multiple-subcarrier modulation in optical wireless communications , 2003, IEEE Commun. Mag..

[25]  Volker Jungnickel,et al.  155 Mbit/s wireless transmission with imaging infrared receiver , 2001 .

[26]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..

[27]  D. R. Wisely,et al.  A 1 Gbit/s optical wireless tracked architecture for ATM delivery , 1996 .

[28]  D. R. Wisely,et al.  Hub architecture for infra-red wireless networks in office environments , 1999 .

[29]  Xia Li,et al.  Channel Capacity of IM/DD Optical Communication Systems and of ACO-OFDM , 2007, 2007 IEEE International Conference on Communications.

[30]  Tomoaki Ohtsuki,et al.  Multiple-subcarrier optical communication systems with peak reduction carriers , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[31]  Iwao Sasase,et al.  Multiple subcarrier modulation for infrared wireless systems using punctured convolutional codes and variable amplitude block codes , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[32]  Mohsen Kavehrad,et al.  High-speed power-efficient indoor wireless infrared communication using code combining .I , 2002, IEEE Trans. Commun..

[33]  Tomoaki Ohtsuki Rate adaptive indoor infrared wireless communication systems using repeated and punctured convolutional codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).