Replacing Manual Rising Plate Meter Measurements with Low-cost UAV-Derived Sward Height Data in Grasslands for Spatial Monitoring

Non-destructive methods to derive spatial information on the development of forage mass are of key importance in managed grasslands. Established methods are rising plate meter (RPM) and rapid pasture meter, which both require in-field work, are rather time consuming, and do not provide spatially continuous data. Therefore, the overall objective of this study is to investigate low-cost unmanned aerial vehicle (UAV)-based RGB image acquisition for grassland monitoring. The idea of this paper is to transfer the successfully introduced approach of crop surface models (CSMs) for ultrahigh resolution analysis of plant height to managed grasslands. The study area is the Rengen Long-term Grassland Experiment, Germany, which is a two-cut experiment and was established in 1941. We conducted RPM and UAV-based data acquisition over six growth periods in 2014, 2015, and 2016. In 3 years, 26 RPM and 46 UAV campaigns were conducted under varying weather conditions (cloudy/sunny). The UAV-based RGB imagery was photogrammetrically processed with Structure from Motion and Multi-view Stereopsis techniques, producing multi-temporal CSMs for grassland sward height analysis. The regression analysis of UAV-derived sward height (CSM-SH) against RPM-measured sward height (RPM-SH) resulted in R2 of 0.91, 0.87, and 0.83 for 2014, 2015, and 2016, respectively. The pooling of the data for all 3 years resulted in an R2 of 0.86. These findings prove the successful transfer of the CSM approach for grassland monitoring and the potential of UAV-based monitoring to replace manual or in-field measurements with RPM or rapid pasture meter.ZusammenfassungKostengünstiges, UAV-basiertes Grünlandmonitoring als Ersatz für manuelle Feldmessungen mittels Rising Plate Meter. Nichtdestruktive Methoden für die räumliche Bestimmung von Biomasse sind in bewirtschafteten Grünlandsystemen von zentraler Bedeutung. Etablierte und validierte, nichtdestruktive Messmethoden hierfür sind z.B. das Rising Plate Meter (RPM) sowie das Rapid Pasture Meter. Beide Verfahren benötigen zeit- und arbeitsaufwendige Geländearbeiten und liefern keine kontinuierliche räumliche Abdeckung, sondern Punkt- bzw. Transektmessungen, die interpoliert werden. Deshalb ist die übergeordnete Zielsetzung dieser Studie das Monitoring von Grünland anhand von kostengünstigen Drohnen (Unmanned Aerial Vehicles—UAVs) zur Erfassung und Auswertung von RGB-Bildern. Hierfür soll die Methode von Crop Surface Models (CSMs), die erfolgreich für die Biomassebestimmung in Ackerfrüchten validiert wurde, auf Grünlandschnittsysteme übertragen werden. Der CSM-Ansatz basiert auf der Bestimmung von absoluten Pflanzenhöhen in ultrahoher räumlicher Auflösung. Der Untersuchungsstandort ist das Dauergrünlandexperiment in Rengen (RGE) bei Daun, das in der Eifel in Westdeutschland liegt. Das RGE ist ein Versuch mit zwei Aufwüchsen pro Jahr und wurde 1941 etabliert. In den Jahren 2014, 2015 und 2016 wurden für insgesamt sechs Aufwüchse 26 RPM- und 46 UAV-Kampagnen durchgeführt. Die Befliegungen wurden unter verschiedenen Wetterverhältnissen durchgeführt (bewölkt/sonnig). Die UAV-erfassten RGB-Bilddaten wurden photogrammetrisch mit Structure-from-Motion (SfM) und Multi-View Stereopsis (MVS) analysiert. Das Ergebnis hiervon sind multitemporale CSMs für das RGE, die für die Analyse von Pflanzenwachstumsraten genutzt werden können. Die Ergebnisse der Regressionsanalysen zwischen den RPM-Messungen und der UAV-basierten CSM-Daten sind sehr vielversprechend. Die Bestimmtheitsmaße betragen für 2014 0,91, für 2015 0,87, für 2016 0,83 und für alle drei Jahre zusammen 0,86. Diese Ergebnisse zeigen den erfolgreichen Transfer der CSM-Methode auf Grünlandsysteme sowie das große Potential von UAV-basierter Bilddatenerfassung für das Grünlandmonitoring. Letzteres könnte sogar etablierte Messmethoden wie RPM oder Rapid Pasture Meter in Zukunft ersetzen.

[1]  G. Waldhoff,et al.  Crop height variability detection in a single field by multi-temporal terrestrial laser scanning , 2016, Precision Agriculture.

[2]  Simon Bennertz,et al.  Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging , 2014, Remote. Sens..

[3]  W. Catchpole,et al.  Estimating plant biomass: A review of techniques , 1992 .

[4]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[5]  Josef Hakl,et al.  The use of a rising plate meter to evaluate lucerne (Medicago sativa L.) height as an important agronomic trait enabling yield estimation , 2012 .

[6]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[7]  M. E. Castle A simple disc instrument for estimating herbage yield , 1976 .

[8]  Qiang Cao,et al.  Multitemporal crop surface models: accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice , 2014 .

[9]  Simon Bennertz,et al.  Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[10]  Michael Wachendorf,et al.  Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure , 2017, Remote. Sens..

[11]  Yi Sun,et al.  Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle , 2018, Remote. Sens..

[12]  Arko Lucieer,et al.  An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds , 2012, Remote. Sens..

[13]  Corey A. Moffet,et al.  Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors , 2015, Sensors.

[14]  Georg Bareth,et al.  Analysis of crop reflectance for estimating biomass in rice canopies at different phenological stages , 2013 .

[15]  Georg Bareth,et al.  Spectral and 3D Nonspectral Approaches to Crop Trait Estimation Using Ground and UAV Sensing , 2018, Biophysical and Biochemical Characterization and Plant Species Studies.

[16]  Andreas Burkart,et al.  Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance , 2015 .

[17]  Stuart I. Granshaw,et al.  Structure from motion: origins and originality , 2018 .

[18]  G. Bareth,et al.  USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE), GERMANY , 2017 .

[19]  Clement Atzberger,et al.  Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs , 2013, Remote. Sens..

[20]  Arko Lucieer,et al.  The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis , 2015, Remote. Sens..

[21]  Y. Miao,et al.  Transferability of Models for Estimating Paddy Rice Biomass from Spatial Plant Height Data , 2015 .

[22]  Arko Lucieer,et al.  Poppy Crop Height and Capsule Volume Estimation from a Single UAS Flight , 2017, Remote. Sens..

[23]  Michael Marshall,et al.  Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing , 2015, Remote. Sens..

[24]  M. Wachendorf,et al.  Combining ultrasonic sward height and spectral signatures to assess the biomass of legume-grass swards , 2013 .

[25]  Jürgen Schellberg,et al.  A site-specific slurry application technique on grassland and on arable crops. , 2009, Bioresource technology.

[26]  David J. Gibson,et al.  Grasses and Grassland Ecology , 2009 .

[27]  Zhiliang Zhu,et al.  Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar , 2017, Sensors.

[28]  A. Gruen Development and Status of Image Matching in Photogrammetry , 2012 .

[29]  Eija Honkavaara,et al.  A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone , 2018 .

[30]  J. V. Straaten,et al.  Grasslands in Europe of High Nature Value , 2009 .

[31]  Arko Lucieer,et al.  Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery , 2012, Remote. Sens..

[32]  M. Upsdell,et al.  Calibration of the C-DAX Rapid Pasturemeter and the rising plate meter for kikuyu-based Northland dairy pastures. , 2009 .

[33]  Matthias Rothmund,et al.  Precision agriculture on grassland : Applications, perspectives and constraints , 2008 .

[34]  Johanna Link,et al.  Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System , 2014, Remote. Sens..

[35]  Andreas Burkart,et al.  Deploying four optical UAV-based sensors over grassland: challenges and limitations , 2015 .

[36]  J. Schellberg,et al.  Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany. , 2009 .

[37]  J. Peyraud,et al.  Review of the effect of nitrogen fertilization on the chemical composition, intake, digestion and nutritive value of fresh herbage: consequences on animal nutrition and N balance , 1998 .

[38]  J. Affeldt,et al.  The feasibility study , 2019, The Information System Consultant’s Handbook.

[39]  MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY , 2016 .

[40]  David P. Roy,et al.  Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass , 2017, Remote. Sens..

[41]  C. Rotz,et al.  Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler , 2001 .

[42]  S. I. Granshaw,et al.  BUNDLE ADJUSTMENT METHODS IN ENGINEERING PHOTOGRAMMETRY , 2006 .

[43]  Jürgen Schellberg,et al.  Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices , 2017, Remote. Sens..

[44]  M. Wachendorf,et al.  Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor , 2011 .

[45]  J. Schellberg,et al.  The Rengen Grassland Experiment: relationship between soil and biomass chemical properties, amount of elements applied, and their uptake , 2010, Plant and Soil.

[46]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[47]  C. Rotz,et al.  Whole-farm perspectives of nutrient flows in grassland agriculture , 2005 .

[48]  Pat Dillon,et al.  A comparison of four methods of herbage mass estimation , 2016 .

[49]  G. J. Piggot A comparison of four methods for estimating herbage yield of temperate dairy pastures , 1989 .

[50]  Helge Aasen,et al.  Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers – From theory to application , 2018 .

[51]  Nora Tilly,et al.  Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass , 2015, Remote. Sens..

[52]  Eija Honkavaara,et al.  Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV and Aircraft Based Spectral and Photogrammetric 3D Features , 2018, Remote. Sens..

[53]  Yi Lin,et al.  A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements , 2010 .

[54]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[55]  Juliane Bendig,et al.  Low-weight and UAV-based Hyperspectral Full-frame Cameras for Monitoring Crops: Spectral Comparison with Portable Spectroradiometer Measurements , 2015 .

[56]  Juliane Bendig,et al.  UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability , 2013 .

[57]  Rademacher,et al.  Long‐term effects of fertilizer on soil nutrient concentration, yield, forage quality and floristic composition of a hay meadow in the Eifel mountains, Germany , 1999 .

[58]  K. Goulding,et al.  Optimizing nutrient management for farm systems , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[59]  Dirk Hoffmeister,et al.  High-resolution Crop Surface Models (CSM) and Crop Volume Models (CVM) on field level by terrestrial laser scanning , 2009, International Symposium on Digital Earth.

[60]  Dirk Hoffmeister,et al.  A Comparison of UAV- and TLS-derived Plant Height for Crop Monitoring: Using Polygon Grids for the Analysis of Crop Surface Models (CSMs) , 2016 .

[61]  Heikki Saari,et al.  Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture , 2013, Remote. Sens..